blob: 0077338111a9253801f9123c50556e6a102900eb [file] [log] [blame] [edit]
// Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const {
const size_t kWindowSize = map_.size();
if (seq_num > max_seq_num_) {
return false;
}
uint64_t idx = max_seq_num_ - seq_num;
return idx >= kWindowSize || map_[idx];
}
void DTLSReplayBitmap::Record(uint64_t seq_num) {
const size_t kWindowSize = map_.size();
// Shift the window if necessary.
if (seq_num > max_seq_num_) {
uint64_t shift = seq_num - max_seq_num_;
if (shift >= kWindowSize) {
map_.reset();
} else {
map_ <<= shift;
}
max_seq_num_ = seq_num;
}
uint64_t idx = max_seq_num_ - seq_num;
if (idx < kWindowSize) {
map_[idx] = true;
}
}
static uint16_t dtls_record_version(const SSL *ssl) {
if (ssl->s3->version == 0) {
// Before the version is determined, outgoing records use dTLS 1.0 for
// historical compatibility requirements.
return DTLS1_VERSION;
}
// DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the
// version itself.
return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION
: ssl->s3->version;
}
static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) {
// DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the
// combined value. If the version is not known, the epoch is unencrypted and
// the value is ignored.
return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION)
? num.sequence()
: num.combined();
}
// reconstruct_epoch finds the largest epoch that ends with the epoch bits from
// |wire_epoch| that is less than or equal to |current_epoch|, to match the
// epoch reconstruction algorithm described in RFC 9147 section 4.2.2.
static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) {
uint16_t current_epoch_high = current_epoch & 0xfffc;
uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high;
if (epoch > current_epoch && current_epoch_high > 0) {
epoch -= 0x4;
}
return epoch;
}
uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask,
uint64_t max_valid_seqnum) {
// Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to
// enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2
// bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would
// require 5 petabytes. This allows us to continue to pack a DTLS record
// number into an 8-byte structure.
assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence);
assert(seq_mask == 0xff || seq_mask == 0xffff);
uint64_t max_seqnum_plus_one = max_valid_seqnum + 1;
uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask;
uint64_t step = seq_mask + 1;
// This addition cannot overflow. It is at most 2^48 + seq_mask. It, however,
// may exceed 2^48-1.
uint64_t seqnum = max_seqnum_plus_one + diff;
bool too_large = seqnum > DTLSRecordNumber::kMaxSequence;
// If the diff is larger than half the step size, then the closest seqnum
// to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of
// seqnum.
bool closer_is_less = diff > step / 2;
// Subtracting step from seqnum will cause underflow if seqnum is too small.
bool would_underflow = seqnum < step;
if (too_large || (closer_is_less && !would_underflow)) {
seqnum -= step;
}
assert(seqnum <= DTLSRecordNumber::kMaxSequence);
return seqnum;
}
static Span<uint8_t> cbs_to_writable_bytes(CBS cbs) {
return Span(const_cast<uint8_t *>(CBS_data(&cbs)), CBS_len(&cbs));
}
struct ParsedDTLSRecord {
// read_epoch will be null if the record is for an unrecognized epoch. In that
// case, |number| may be unset.
DTLSReadEpoch *read_epoch = nullptr;
DTLSRecordNumber number;
CBS header, body;
uint8_t type = 0;
uint16_t version = 0;
};
static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) {
// Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for
// backwards compatibility.
return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION &&
epoch > 0;
}
static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
if (out->type & 0x10) {
// Connection ID bit set, which we didn't negotiate.
return false;
}
uint16_t max_epoch = ssl->d1->read_epoch.epoch;
if (ssl->d1->next_read_epoch != nullptr) {
max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch);
}
uint16_t epoch = reconstruct_epoch(out->type, max_epoch);
size_t seq_len = (out->type & 0x08) ? 2 : 1;
CBS seq_bytes;
if (!CBS_get_bytes(in, &seq_bytes, seq_len)) {
return false;
}
if (out->type & 0x04) {
// 16-bit length present
if (!CBS_get_u16_length_prefixed(in, &out->body)) {
return false;
}
} else {
// No length present - the remaining contents are the whole packet.
// CBS_get_bytes is used here to advance |in| to the end so that future
// code that computes the number of consumed bytes functions correctly.
BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in)));
}
// Drop the previous read epoch if expired.
if (ssl->d1->prev_read_epoch != nullptr &&
ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec >
ssl->d1->prev_read_epoch->expire) {
ssl->d1->prev_read_epoch = nullptr;
}
// Look up the corresponding epoch. This header form only matches encrypted
// DTLS 1.3 epochs.
DTLSReadEpoch *read_epoch = nullptr;
if (epoch == ssl->d1->read_epoch.epoch) {
read_epoch = &ssl->d1->read_epoch;
} else if (ssl->d1->next_read_epoch != nullptr &&
epoch == ssl->d1->next_read_epoch->epoch) {
read_epoch = ssl->d1->next_read_epoch.get();
} else if (ssl->d1->prev_read_epoch != nullptr &&
epoch == ssl->d1->prev_read_epoch->epoch.epoch) {
read_epoch = &ssl->d1->prev_read_epoch->epoch;
}
if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) {
out->read_epoch = read_epoch;
// Decrypt and reconstruct the sequence number:
uint8_t mask[2];
if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) {
// GenerateMask most likely failed because the record body was not long
// enough.
return false;
}
// Apply the mask to the sequence number in-place. The header (with the
// decrypted sequence number bytes) is used as the additional data for the
// AEAD function.
auto writable_seq = cbs_to_writable_bytes(seq_bytes);
uint64_t seq = 0;
for (size_t i = 0; i < writable_seq.size(); i++) {
writable_seq[i] ^= mask[i];
seq = (seq << 8) | writable_seq[i];
}
uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1,
read_epoch->bitmap.max_seq_num());
out->number = DTLSRecordNumber(epoch, full_seq);
}
return true;
}
static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) {
uint64_t epoch_and_seq;
if (!CBS_get_u16(in, &out->version) || //
!CBS_get_u64(in, &epoch_and_seq) ||
!CBS_get_u16_length_prefixed(in, &out->body)) {
return false;
}
out->number = DTLSRecordNumber::FromCombined(epoch_and_seq);
uint16_t epoch = out->number.epoch();
bool version_ok;
if (epoch == 0) {
// Only check the first byte. Enforcing beyond that can prevent decoding
// version negotiation failure alerts.
version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR;
} else {
version_ok = out->version == dtls_record_version(ssl);
}
if (!version_ok) {
return false;
}
// Look up the corresponding epoch. In DTLS 1.2, we only need to consider one
// epoch.
if (epoch == ssl->d1->read_epoch.epoch &&
!use_dtls13_record_header(ssl, epoch)) {
out->read_epoch = &ssl->d1->read_epoch;
}
return true;
}
static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) {
CBS copy = *cbs;
if (!CBS_get_u8(cbs, &out->type)) {
return false;
}
bool ok;
if ((out->type & 0xe0) == 0x20) {
ok = parse_dtls13_record(ssl, cbs, out);
} else {
ok = parse_dtls12_record(ssl, cbs, out);
}
if (!ok) {
return false;
}
if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
return false;
}
size_t header_len = CBS_data(&out->body) - CBS_data(&copy);
BSSL_CHECK(CBS_get_bytes(&copy, &out->header, header_len));
return true;
}
enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
DTLSRecordNumber *out_number,
Span<uint8_t> *out,
size_t *out_consumed,
uint8_t *out_alert, Span<uint8_t> in) {
*out_consumed = 0;
if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
return ssl_open_record_close_notify;
}
if (in.empty()) {
return ssl_open_record_partial;
}
CBS cbs(in);
ParsedDTLSRecord record;
if (!parse_dtls_record(ssl, &cbs, &record)) {
// The record header was incomplete or malformed. Drop the entire packet.
*out_consumed = in.size();
return ssl_open_record_discard;
}
ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header);
if (record.read_epoch == nullptr ||
record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) {
// Drop this record. It's from an unknown epoch or is a replay. Note that if
// the record is from next epoch, it could be buffered for later. For
// simplicity, drop it and expect retransmit to handle it later; DTLS must
// handle packet loss anyway.
*out_consumed = in.size() - CBS_len(&cbs);
return ssl_open_record_discard;
}
// Decrypt the body in-place.
if (!record.read_epoch->aead->Open(out, record.type, record.version,
dtls_aead_sequence(ssl, record.number),
record.header,
cbs_to_writable_bytes(record.body))) {
// Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347.
// Clear the error queue of any errors decryption may have added. Drop the
// entire packet as it must not have come from the peer.
//
// TODO(davidben): This doesn't distinguish malloc failures from encryption
// failures.
ERR_clear_error();
*out_consumed = in.size() - CBS_len(&cbs);
return ssl_open_record_discard;
}
*out_consumed = in.size() - CBS_len(&cbs);
// DTLS 1.3 hides the record type inside the encrypted data.
bool has_padding = !record.read_epoch->aead->is_null_cipher() &&
ssl_protocol_version(ssl) >= TLS1_3_VERSION;
// Check the plaintext length.
size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0);
if (out->size() > plaintext_limit) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
*out_alert = SSL_AD_RECORD_OVERFLOW;
return ssl_open_record_error;
}
if (has_padding) {
do {
if (out->empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
*out_alert = SSL_AD_DECRYPT_ERROR;
return ssl_open_record_error;
}
record.type = out->back();
*out = out->subspan(0, out->size() - 1);
} while (record.type == 0);
}
record.read_epoch->bitmap.Record(record.number.sequence());
// Once we receive a record from the next epoch in DTLS 1.3, it becomes the
// current epoch. Also save the previous epoch. This allows us to handle
// packet reordering on KeyUpdate, as well as ACK retransmissions of the
// Finished flight.
if (record.read_epoch == ssl->d1->next_read_epoch.get()) {
assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION);
auto prev = MakeUnique<DTLSPrevReadEpoch>();
if (prev == nullptr) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return ssl_open_record_error;
}
// Release the epoch after a timeout.
prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec;
if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) {
prev->expire = UINT64_MAX; // Saturate on overflow.
} else {
prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS;
}
prev->epoch = std::move(ssl->d1->read_epoch);
ssl->d1->prev_read_epoch = std::move(prev);
ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch);
ssl->d1->next_read_epoch = nullptr;
}
// TODO(davidben): Limit the number of empty records as in TLS? This is only
// useful if we also limit discarded packets.
if (record.type == SSL3_RT_ALERT) {
return ssl_process_alert(ssl, out_alert, *out);
}
// Reject application data in epochs that do not allow it.
if (record.type == SSL3_RT_APPLICATION_DATA) {
bool app_data_allowed;
if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
// Application data is allowed in 0-RTT (epoch 1) and after the handshake
// (3 and up).
app_data_allowed =
record.number.epoch() == 1 || record.number.epoch() >= 3;
} else {
// Application data is allowed starting epoch 1.
app_data_allowed = record.number.epoch() >= 1;
}
if (!app_data_allowed) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
*out_alert = SSL_AD_UNEXPECTED_MESSAGE;
return ssl_open_record_error;
}
}
ssl->s3->warning_alert_count = 0;
*out_type = record.type;
*out_number = record.number;
return ssl_open_record_success;
}
static DTLSWriteEpoch *get_write_epoch(const SSL *ssl, uint16_t epoch) {
if (ssl->d1->write_epoch.epoch() == epoch) {
return &ssl->d1->write_epoch;
}
for (const auto &e : ssl->d1->extra_write_epochs) {
if (e->epoch() == epoch) {
return e.get();
}
}
return nullptr;
}
size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) {
if (!use_dtls13_record_header(ssl, epoch)) {
return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH;
}
// The DTLS 1.3 has a variable length record header. We never send Connection
// ID, we always send 16-bit sequence numbers, and we send a length. (Length
// can be omitted, but only for the last record of a packet. Since we send
// multiple records in one packet, it's easier to implement always sending the
// length.)
return DTLS1_3_RECORD_HEADER_WRITE_LENGTH;
}
size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
size_t ret = dtls_record_header_write_len(ssl, epoch) +
write_epoch->aead->MaxOverhead();
if (use_dtls13_record_header(ssl, epoch)) {
// Add 1 byte for the encrypted record type.
ret++;
}
return ret;
}
size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
return dtls_record_header_write_len(ssl, epoch) +
write_epoch->aead->ExplicitNonceLen();
}
size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) {
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
return 0;
}
size_t header_len = dtls_record_header_write_len(ssl, epoch);
if (max_out <= header_len) {
return 0;
}
max_out -= header_len;
max_out = write_epoch->aead->MaxSealInputLen(max_out);
if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) {
// Remove 1 byte for the encrypted record type.
max_out--;
}
return max_out;
}
bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out,
size_t *out_len, size_t max_out, uint8_t type,
const uint8_t *in, size_t in_len, uint16_t epoch) {
const size_t prefix = dtls_seal_prefix_len(ssl, epoch);
if (buffers_alias(in, in_len, out, max_out) &&
(max_out < prefix || out + prefix != in)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return false;
}
// Determine the parameters for the current epoch.
DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch);
if (write_epoch == nullptr) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
const size_t record_header_len = dtls_record_header_write_len(ssl, epoch);
// Ensure the sequence number update does not overflow.
DTLSRecordNumber record_number = write_epoch->next_record;
if (!record_number.HasNext()) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return false;
}
bool dtls13_header = use_dtls13_record_header(ssl, epoch);
uint8_t *extra_in = NULL;
size_t extra_in_len = 0;
if (dtls13_header) {
extra_in = &type;
extra_in_len = 1;
}
size_t ciphertext_len;
if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len,
extra_in_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
return false;
}
if (max_out < record_header_len + ciphertext_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return false;
}
uint16_t record_version = dtls_record_version(ssl);
if (dtls13_header) {
// The first byte of the DTLS 1.3 record header has the following format:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0|0|1|C|S|L|E E|
// +-+-+-+-+-+-+-+-+
//
// We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length
// is present), which is a mask of 0x2c. The E E bits are the low-order two
// bits of the epoch.
//
// +-+-+-+-+-+-+-+-+
// |0|0|1|0|1|1|E E|
// +-+-+-+-+-+-+-+-+
out[0] = 0x2c | (epoch & 0x3);
// We always use a two-byte sequence number. A one-byte sequence number
// would require coordinating with the application on ACK feedback to know
// that the peer is not too far behind.
CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence());
// TODO(crbug.com/42290594): When we know the record is last in the packet,
// omit the length.
CRYPTO_store_u16_be(out + 3, ciphertext_len);
} else {
out[0] = type;
CRYPTO_store_u16_be(out + 1, record_version);
CRYPTO_store_u64_be(out + 3, record_number.combined());
CRYPTO_store_u16_be(out + 11, ciphertext_len);
}
Span<const uint8_t> header(out, record_header_len);
if (!write_epoch->aead->SealScatter(
out + record_header_len, out + prefix, out + prefix + in_len, type,
record_version, dtls_aead_sequence(ssl, record_number), header, in,
in_len, extra_in, extra_in_len)) {
return false;
}
// Perform record number encryption (RFC 9147 section 4.2.3).
if (dtls13_header) {
// Record number encryption uses bytes from the ciphertext as a sample to
// generate the mask used for encryption. For simplicity, pass in the whole
// ciphertext as the sample - GenerateRecordNumberMask will read only what
// it needs (and error if |sample| is too short).
Span<const uint8_t> sample(out + record_header_len, ciphertext_len);
uint8_t mask[2];
if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) {
return false;
}
out[1] ^= mask[0];
out[2] ^= mask[1];
}
*out_number = record_number;
write_epoch->next_record = record_number.Next();
*out_len = record_header_len + ciphertext_len;
ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header);
return true;
}
BSSL_NAMESPACE_END