| // Copyright 2017 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef OPENSSL_HEADER_SSL_SPAN_H |
| #define OPENSSL_HEADER_SSL_SPAN_H |
| |
| #include <openssl/base.h> // IWYU pragma: export |
| |
| #if !defined(BORINGSSL_NO_CXX) |
| |
| extern "C++" { |
| |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <limits> |
| #include <string_view> |
| #include <type_traits> |
| |
| #if __has_include(<version>) |
| #include <version> |
| #endif |
| |
| #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L |
| #include <ranges> |
| #endif |
| |
| BSSL_NAMESPACE_BEGIN |
| inline constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max(); |
| |
| template <typename T, size_t N = dynamic_extent> |
| class Span; |
| BSSL_NAMESPACE_END |
| |
| #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L |
| // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This |
| // should be done before the definition of `Span`, so that any inlined calls to |
| // range functionality use the correct specializations. |
| template <typename T, size_t N> |
| inline constexpr bool std::ranges::enable_view<bssl::Span<T, N>> = true; |
| template <typename T, size_t N> |
| inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T, N>> = |
| true; |
| #endif |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| namespace internal { |
| template <typename T> |
| class SpanBase { |
| // Put comparison operator implementations into a base class with const T, so |
| // they can be used with any type that implicitly converts into a Span. |
| static_assert(std::is_const<T>::value, |
| "Span<T> must be derived from SpanBase<const T>"); |
| |
| friend bool operator==(Span<T> lhs, Span<T> rhs) { |
| return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| } |
| |
| friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); } |
| }; |
| |
| // Container class to store the size of a span at runtime or compile time. |
| template <typename T, size_t N> |
| class SpanStorage : private SpanBase<const T> { |
| public: |
| constexpr SpanStorage(T *data, size_t size) : data_(data) { |
| BSSL_CHECK(size == N); |
| } |
| constexpr T *data() const { return data_; } |
| constexpr size_t size() const { return N; } |
| |
| private: |
| T *data_; |
| }; |
| |
| template <typename T> |
| class SpanStorage<T, dynamic_extent> : private SpanBase<const T> { |
| public: |
| constexpr SpanStorage(T *data, size_t size) : data_(data), size_(size) {} |
| constexpr T *data() const { return data_; } |
| constexpr size_t size() const { return size_; } |
| |
| private: |
| T *data_; |
| size_t size_; |
| }; |
| |
| // Heuristically test whether C is a container type that can be converted into |
| // a Span<T> by checking for data() and size() member functions. |
| template <typename C, typename T> |
| using EnableIfContainer = std::enable_if_t< |
| std::is_convertible_v<decltype(std::declval<C>().data()), T *> && |
| std::is_integral_v<decltype(std::declval<C>().size())>>; |
| |
| // A fake type used to be able to SFINAE between two different container |
| // constructors - by giving one this as a second default argument, and one not. |
| struct AllowRedeclaringConstructor {}; |
| |
| } // namespace internal |
| |
| // A Span<T> is a non-owning reference to a contiguous array of objects of type |
| // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of |
| // elements accessible via that pointer. The elements referenced by the Span can |
| // be mutated if |T| is mutable. |
| // |
| // A Span can be constructed from container types implementing |data()| and |
| // |size()| methods. If |T| is constant, construction from a container type is |
| // implicit. This allows writing methods that accept data from some unspecified |
| // container type: |
| // |
| // // Foo views data referenced by v. |
| // void Foo(bssl::Span<const uint8_t> v) { ... } |
| // |
| // std::vector<uint8_t> vec; |
| // Foo(vec); |
| // |
| // For mutable Spans, conversion is explicit: |
| // |
| // // FooMutate mutates data referenced by v. |
| // void FooMutate(bssl::Span<uint8_t> v) { ... } |
| // |
| // FooMutate(bssl::Span<uint8_t>(vec)); |
| // |
| // You can also use C++17 class template argument deduction to construct Spans |
| // in order to deduce the type of the Span automatically. |
| // |
| // FooMutate(bssl::Span(vec)); |
| // |
| // Note that Spans have value type sematics. They are cheap to construct and |
| // copy, and should be passed by value whenever a method would otherwise accept |
| // a reference or pointer to a container or array. |
| template <typename T, size_t N> |
| class Span : public internal::SpanStorage<T, N> { |
| public: |
| using element_type = T; |
| using value_type = std::remove_cv_t<T>; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using pointer = T *; |
| using const_pointer = const T *; |
| using reference = T &; |
| using const_reference = const T &; |
| using iterator = T *; |
| using const_iterator = const T *; |
| |
| template <typename U = T, |
| typename = std::enable_if_t<N == 0 || N == dynamic_extent, U>> |
| constexpr Span() : internal::SpanStorage<T, N>(nullptr, 0) {} |
| |
| // NOTE: This constructor may abort() at runtime if len differs from the |
| // compile-time size, if any. |
| constexpr Span(T *ptr, size_t len) : internal::SpanStorage<T, N>(ptr, len) {} |
| |
| template <size_t NA, |
| typename = std::enable_if_t<N == NA || N == dynamic_extent>> |
| // NOLINTNEXTLINE(google-explicit-constructor): same as std::span. |
| constexpr Span(T (&array)[NA]) : internal::SpanStorage<T, N>(array, NA) {} |
| |
| template < |
| size_t NA, typename U, |
| typename = std::enable_if_t<std::is_convertible_v<U (*)[], T (*)[]>>, |
| typename = std::enable_if_t<N == dynamic_extent || N == NA>> |
| // NOLINTNEXTLINE(google-explicit-constructor): same as std::span. |
| constexpr Span(Span<U, NA> other) |
| : internal::SpanStorage<T, N>(other.data(), other.size()) {} |
| |
| template <typename C, typename = internal::EnableIfContainer<C, T>, |
| typename = std::enable_if_t<std::is_const<T>::value, C>, |
| typename = std::enable_if_t<N == dynamic_extent, C>> |
| // NOLINTNEXTLINE(google-explicit-constructor): same as std::span. |
| constexpr Span(const C &container) |
| : internal::SpanStorage<T, N>(container.data(), container.size()) {} |
| |
| // NOTE: This constructor may abort() at runtime if the container's length |
| // differs from the compile-time size, if any. |
| template <typename C, typename = internal::EnableIfContainer<C, T>, |
| typename = std::enable_if_t<std::is_const<T>::value, C>, |
| typename = std::enable_if_t<N != dynamic_extent, C>> |
| constexpr explicit Span(const C &container, |
| internal::AllowRedeclaringConstructor = {}) |
| : internal::SpanStorage<T, N>(container.data(), container.size()) {} |
| |
| // NOTE: This constructor may abort() at runtime if the container's length |
| // differs from the compile-time size, if any. |
| template <typename C, typename = internal::EnableIfContainer<C, T>, |
| typename = std::enable_if_t<!std::is_const<T>::value, C>> |
| constexpr explicit Span(C &container) |
| : internal::SpanStorage<T, N>(container.data(), container.size()) {} |
| |
| using internal::SpanStorage<T, N>::data; |
| using internal::SpanStorage<T, N>::size; |
| constexpr bool empty() const { return size() == 0; } |
| |
| constexpr iterator begin() const { return data(); } |
| constexpr const_iterator cbegin() const { return data(); } |
| constexpr iterator end() const { return data() + size(); } |
| constexpr const_iterator cend() const { return end(); } |
| |
| constexpr T &front() const { |
| BSSL_CHECK(size() != 0); |
| return data()[0]; |
| } |
| constexpr T &back() const { |
| BSSL_CHECK(size() != 0); |
| return data()[size() - 1]; |
| } |
| |
| constexpr T &operator[](size_t i) const { |
| BSSL_CHECK(i < size()); |
| return data()[i]; |
| } |
| T &at(size_t i) const { return (*this)[i]; } |
| |
| private: |
| static constexpr size_t SubspanOutLen(size_t size, size_t pos, size_t len) { |
| // NOTE: This differs from std::span's subspan length in that this one |
| // performs clipping. |
| // |
| // For std::span, this would be: |
| // |
| // len != dynamic_extent ? len : size - pos |
| return std::min(size - pos, len); |
| } |
| static constexpr size_t SubspanTypeOutLen(size_t size, size_t pos, |
| size_t len) { |
| // NOTE: This differs from std::span's subspan length in that this one |
| // performs clipping, and thus has to return dynamic extent whenever the |
| // input span has dynamic extent. |
| // |
| // For std::span, this would be: |
| // |
| // len != dynamic_extent |
| // ? len |
| // : (size != dynamic_extent ? size - pos : dynamic_extent) |
| if (size == dynamic_extent) { |
| return dynamic_extent; |
| } |
| return SubspanOutLen(size, pos, len); |
| } |
| |
| public: |
| // NOTE: This method may abort() at runtime if pos is out of range. |
| constexpr Span<T> subspan(size_t pos = 0, size_t len = dynamic_extent) const { |
| // absl::Span throws an exception here. Note std::span and Chromium |
| // base::span additionally forbid pos + len being out of range, with a |
| // special case at npos/dynamic_extent, while absl::Span::subspan clips |
| // the span. For now, we align with absl::Span in case we switch to it in |
| // the future. |
| BSSL_CHECK(pos <= size()); |
| return Span<T>(data() + pos, SubspanOutLen(size(), pos, len)); |
| } |
| |
| // NOTE: This method may abort() at runtime if len is out of range. |
| template <size_t pos, size_t len = dynamic_extent> |
| constexpr Span<T, SubspanTypeOutLen(N, pos, len)> subspan() const { |
| // absl::Span throws an exception here. Note std::span and Chromium |
| // base::span additionally forbid pos + len being out of range, with a |
| // special case at npos/dynamic_extent, while absl::Span::subspan clips |
| // the span. For now, we align with absl::Span in case we switch to it in |
| // the future. |
| // |
| // Removing clipping however will allow making the return type have a |
| // static extent whenever len is static, which matches std::span and |
| // could improve efficiency. |
| BSSL_CHECK(pos <= size()); |
| return Span<T, SubspanTypeOutLen(N, pos, len)>(data() + pos, |
| std::min(size() - pos, len)); |
| } |
| |
| // NOTE: This method may abort() at runtime if len is out of range. |
| constexpr Span<T> first(size_t len) const { |
| BSSL_CHECK(len <= size()); |
| return Span<T>(data(), len); |
| } |
| |
| // NOTE: This method may abort() at runtime if len is out of range. |
| template <size_t len> |
| constexpr Span<T, len> first() const { |
| BSSL_CHECK(len <= size()); |
| return Span<T, len>(data(), len); |
| } |
| |
| // NOTE: This method may abort() at runtime if len is out of range. |
| constexpr Span<T> last(size_t len) const { |
| BSSL_CHECK(len <= size()); |
| return Span<T>(data() + size() - len, len); |
| } |
| |
| // NOTE: This method may abort() at runtime if len is out of range. |
| template <size_t len> |
| constexpr Span<T, len> last() const { |
| BSSL_CHECK(len <= size()); |
| return Span<T, len>(data() + size() - len, len); |
| } |
| }; |
| |
| template <typename T> |
| Span(T *, size_t) -> Span<T>; |
| template <typename T, size_t size> |
| Span(T (&array)[size]) -> Span<T, size>; |
| template < |
| typename C, |
| typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>, |
| typename = internal::EnableIfContainer<C, T>> |
| Span(C &) -> Span<T>; |
| |
| template <typename T> |
| constexpr Span<T> MakeSpan(T *ptr, size_t size) { |
| return Span<T>(ptr, size); |
| } |
| |
| template <typename C> |
| constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) { |
| return MakeSpan(c.data(), c.size()); |
| } |
| |
| template <typename T, size_t N> |
| constexpr Span<T, N> MakeSpan(T (&array)[N]) { |
| return array; |
| } |
| |
| template <typename T> |
| constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) { |
| return Span<const T>(ptr, size); |
| } |
| |
| template <typename C> |
| constexpr auto MakeConstSpan(const C &c) |
| -> decltype(MakeConstSpan(c.data(), c.size())) { |
| return MakeConstSpan(c.data(), c.size()); |
| } |
| |
| template <typename T, size_t size> |
| constexpr Span<const T, size> MakeConstSpan(T (&array)[size]) { |
| return array; |
| } |
| |
| inline Span<const uint8_t> StringAsBytes(std::string_view s) { |
| return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size()); |
| } |
| |
| inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) { |
| return std::string_view(reinterpret_cast<const char *>(b.data()), b.size()); |
| } |
| |
| BSSL_NAMESPACE_END |
| |
| } // extern C++ |
| |
| #endif // !defined(BORINGSSL_NO_CXX) |
| |
| #endif // OPENSSL_HEADER_SSL_SPAN_H |