| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <errno.h> | 
 | #include <limits.h> | 
 | #include <stdarg.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #include <openssl/err.h> | 
 |  | 
 | #if defined(OPENSSL_WINDOWS) | 
 | #include <windows.h> | 
 | #endif | 
 |  | 
 | #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) | 
 | #include <errno.h> | 
 | #include <signal.h> | 
 | #include <unistd.h> | 
 | #endif | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | #define OPENSSL_MALLOC_PREFIX 8 | 
 | static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large"); | 
 |  | 
 | #if defined(OPENSSL_ASAN) | 
 | extern "C" { | 
 | void __asan_poison_memory_region(const volatile void *addr, size_t size); | 
 | void __asan_unpoison_memory_region(const volatile void *addr, size_t size); | 
 | } | 
 | #else | 
 | static void __asan_poison_memory_region(const void *addr, size_t size) {} | 
 | static void __asan_unpoison_memory_region(const void *addr, size_t size) {} | 
 | #endif | 
 |  | 
 | // Windows doesn't really support weak symbols as of May 2019, and Clang on | 
 | // Windows will emit strong symbols instead. See | 
 | // https://bugs.llvm.org/show_bug.cgi?id=37598 | 
 | // | 
 | // EDK2 targets UEFI but builds as ELF and then translates the binary to | 
 | // COFF(!). Thus it builds with __ELF__ defined but cannot actually cope with | 
 | // weak symbols. | 
 | #if !defined(__EDK2_BORINGSSL__) && defined(__ELF__) && defined(__GNUC__) | 
 | #define WEAK_SYMBOL_FUNC(rettype, name, args) \ | 
 |   extern "C" {                                \ | 
 |   rettype name args __attribute__((weak));    \ | 
 |   } | 
 | #else | 
 | #define WEAK_SYMBOL_FUNC(rettype, name, args) \ | 
 |   static rettype(*const name) args = nullptr; | 
 | #endif | 
 |  | 
 | #if defined(BORINGSSL_DETECT_SDALLOCX) | 
 | // sdallocx is a sized |free| function. By passing the size (which we happen to | 
 | // always know in BoringSSL), the malloc implementation can save work. We cannot | 
 | // depend on |sdallocx| being available, however, so it's a weak symbol. | 
 | // | 
 | // This mechanism is kept opt-in because it assumes that, when |sdallocx| is | 
 | // defined, it is part of the same allocator as |malloc|. This is usually true | 
 | // but may break if |malloc| does not implement |sdallocx|, but some other | 
 | // allocator with |sdallocx| is imported which does. | 
 | WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags)) | 
 | #else | 
 | static void (*const sdallocx)(void *ptr, size_t size, int flags) = nullptr; | 
 | #endif | 
 |  | 
 | // The following three functions can be defined to override default heap | 
 | // allocation and freeing. If defined, it is the responsibility of | 
 | // |OPENSSL_memory_free| to zero out the memory before returning it to the | 
 | // system. |OPENSSL_memory_free| will not be passed NULL pointers. | 
 | // | 
 | // WARNING: These functions are called on every allocation and free in | 
 | // BoringSSL across the entire process. They may be called by any code in the | 
 | // process which calls BoringSSL, including in process initializers and thread | 
 | // destructors. When called, BoringSSL may hold pthreads locks. Any other code | 
 | // in the process which, directly or indirectly, calls BoringSSL may be on the | 
 | // call stack and may itself be using arbitrary synchronization primitives. | 
 | // | 
 | // As a result, these functions may not have the usual programming environment | 
 | // available to most C or C++ code. In particular, they may not call into | 
 | // BoringSSL, or any library which depends on BoringSSL. Any synchronization | 
 | // primitives used must tolerate every other synchronization primitive linked | 
 | // into the process, including pthreads locks. Failing to meet these constraints | 
 | // may result in deadlocks, crashes, or memory corruption. | 
 | WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size)) | 
 | WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr)) | 
 | WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr)) | 
 |  | 
 | #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) | 
 | static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT; | 
 | static uint64_t current_malloc_count = 0; | 
 | static uint64_t malloc_number_to_fail = 0; | 
 | static int malloc_failure_enabled = 0, break_on_malloc_fail = 0, | 
 |            any_malloc_failed = 0, disable_malloc_failures = 0; | 
 |  | 
 | static void malloc_exit_handler(void) { | 
 |   CRYPTO_MUTEX_lock_read(&malloc_failure_lock); | 
 |   if (any_malloc_failed) { | 
 |     // Signal to the test driver that some allocation failed, so it knows to | 
 |     // increment the counter and continue. | 
 |     _exit(88); | 
 |   } | 
 |   CRYPTO_MUTEX_unlock_read(&malloc_failure_lock); | 
 | } | 
 |  | 
 | static void init_malloc_failure(void) { | 
 |   const char *env = getenv("MALLOC_NUMBER_TO_FAIL"); | 
 |   if (env != nullptr && env[0] != 0) { | 
 |     char *endptr; | 
 |     malloc_number_to_fail = strtoull(env, &endptr, 10); | 
 |     if (*endptr == 0) { | 
 |       malloc_failure_enabled = 1; | 
 |       atexit(malloc_exit_handler); | 
 |     } | 
 |   } | 
 |   break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != nullptr; | 
 | } | 
 |  | 
 | // should_fail_allocation returns one if the current allocation should fail and | 
 | // zero otherwise. | 
 | static int should_fail_allocation() { | 
 |   static CRYPTO_once_t once = CRYPTO_ONCE_INIT; | 
 |   CRYPTO_once(&once, init_malloc_failure); | 
 |   if (!malloc_failure_enabled || disable_malloc_failures) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // We lock just so multi-threaded tests are still correct, but we won't test | 
 |   // every malloc exhaustively. | 
 |   CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
 |   int should_fail = current_malloc_count == malloc_number_to_fail; | 
 |   current_malloc_count++; | 
 |   any_malloc_failed = any_malloc_failed || should_fail; | 
 |   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
 |  | 
 |   if (should_fail && break_on_malloc_fail) { | 
 |     raise(SIGTRAP); | 
 |   } | 
 |   if (should_fail) { | 
 |     errno = ENOMEM; | 
 |   } | 
 |   return should_fail; | 
 | } | 
 |  | 
 | void OPENSSL_reset_malloc_counter_for_testing(void) { | 
 |   CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
 |   current_malloc_count = 0; | 
 |   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
 | } | 
 |  | 
 | void OPENSSL_disable_malloc_failures_for_testing(void) { | 
 |   CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
 |   BSSL_CHECK(!disable_malloc_failures); | 
 |   disable_malloc_failures = 1; | 
 |   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
 | } | 
 |  | 
 | void OPENSSL_enable_malloc_failures_for_testing(void) { | 
 |   CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
 |   BSSL_CHECK(disable_malloc_failures); | 
 |   disable_malloc_failures = 0; | 
 |   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
 | } | 
 |  | 
 | #else | 
 | static int should_fail_allocation(void) { return 0; } | 
 | #endif | 
 |  | 
 | void *OPENSSL_malloc(size_t size) { | 
 |   void *ptr = nullptr; | 
 |   if (should_fail_allocation()) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (OPENSSL_memory_alloc != nullptr) { | 
 |     assert(OPENSSL_memory_free != nullptr); | 
 |     assert(OPENSSL_memory_get_size != nullptr); | 
 |     void *ptr2 = OPENSSL_memory_alloc(size); | 
 |     if (ptr2 == nullptr && size != 0) { | 
 |       goto err; | 
 |     } | 
 |     return ptr2; | 
 |   } | 
 |  | 
 |   if (size + OPENSSL_MALLOC_PREFIX < size) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ptr = malloc(size + OPENSSL_MALLOC_PREFIX); | 
 |   if (ptr == nullptr) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   *(size_t *)ptr = size; | 
 |  | 
 |   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
 |   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; | 
 |  | 
 | err: | 
 |   // This only works because ERR does not call OPENSSL_malloc. | 
 |   OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void *OPENSSL_zalloc(size_t size) { | 
 |   void *ret = OPENSSL_malloc(size); | 
 |   if (ret != nullptr) { | 
 |     OPENSSL_memset(ret, 0, size); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | void *OPENSSL_calloc(size_t num, size_t size) { | 
 |   if (size != 0 && num > SIZE_MAX / size) { | 
 |     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   return OPENSSL_zalloc(num * size); | 
 | } | 
 |  | 
 | void OPENSSL_free(void *orig_ptr) { | 
 |   if (orig_ptr == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (OPENSSL_memory_free != nullptr) { | 
 |     OPENSSL_memory_free(orig_ptr); | 
 |     return; | 
 |   } | 
 |  | 
 |   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; | 
 |   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
 |  | 
 |   size_t size = *(size_t *)ptr; | 
 |   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); | 
 |  | 
 | // ASan knows to intercept malloc and free, but not sdallocx. | 
 | #if defined(OPENSSL_ASAN) | 
 |   (void)sdallocx; | 
 |   free(ptr); | 
 | #else | 
 |   if (sdallocx) { | 
 |     sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); | 
 |   } else { | 
 |     free(ptr); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { | 
 |   if (orig_ptr == nullptr) { | 
 |     return OPENSSL_malloc(new_size); | 
 |   } | 
 |  | 
 |   size_t old_size; | 
 |   if (OPENSSL_memory_get_size != nullptr) { | 
 |     old_size = OPENSSL_memory_get_size(orig_ptr); | 
 |   } else { | 
 |     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; | 
 |     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
 |     old_size = *(size_t *)ptr; | 
 |     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
 |   } | 
 |  | 
 |   void *ret = OPENSSL_malloc(new_size); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   size_t to_copy = new_size; | 
 |   if (old_size < to_copy) { | 
 |     to_copy = old_size; | 
 |   } | 
 |  | 
 |   memcpy(ret, orig_ptr, to_copy); | 
 |   OPENSSL_free(orig_ptr); | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | void OPENSSL_cleanse(void *ptr, size_t len) { | 
 | #if defined(OPENSSL_WINDOWS) | 
 |   SecureZeroMemory(ptr, len); | 
 | #else | 
 |   OPENSSL_memset(ptr, 0, len); | 
 |  | 
 | #if !defined(OPENSSL_NO_ASM) | 
 |   /* As best as we can tell, this is sufficient to break any optimisations that | 
 |      might try to eliminate "superfluous" memsets. If there's an easy way to | 
 |      detect memset_s, it would be better to use that. */ | 
 |   __asm__ __volatile__("" : : "r"(ptr) : "memory"); | 
 | #endif | 
 | #endif  // !OPENSSL_NO_ASM | 
 | } | 
 |  | 
 | void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); } | 
 |  | 
 | int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; } | 
 |  | 
 | int CRYPTO_secure_malloc_initialized(void) { return 0; } | 
 |  | 
 | size_t CRYPTO_secure_used(void) { return 0; } | 
 |  | 
 | void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); } | 
 |  | 
 | void OPENSSL_secure_clear_free(void *ptr, size_t len) { | 
 |   OPENSSL_clear_free(ptr, len); | 
 | } | 
 |  | 
 | int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { | 
 |   const uint8_t *a = reinterpret_cast<const uint8_t *>(in_a); | 
 |   const uint8_t *b = reinterpret_cast<const uint8_t *>(in_b); | 
 |   uint8_t x = 0; | 
 |  | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     x |= a[i] ^ b[i]; | 
 |   } | 
 |  | 
 |   return x; | 
 | } | 
 |  | 
 | uint32_t OPENSSL_hash32(const void *ptr, size_t len) { | 
 |   // These are the FNV-1a parameters for 32 bits. | 
 |   static const uint32_t kPrime = 16777619u; | 
 |   static const uint32_t kOffsetBasis = 2166136261u; | 
 |  | 
 |   const uint8_t *in = reinterpret_cast<const uint8_t *>(ptr); | 
 |   uint32_t h = kOffsetBasis; | 
 |  | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     h ^= in[i]; | 
 |     h *= kPrime; | 
 |   } | 
 |  | 
 |   return h; | 
 | } | 
 |  | 
 | uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); } | 
 |  | 
 | size_t OPENSSL_strnlen(const char *s, size_t len) { | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     if (s[i] == 0) { | 
 |       return i; | 
 |     } | 
 |   } | 
 |  | 
 |   return len; | 
 | } | 
 |  | 
 | char *OPENSSL_strdup(const char *s) { | 
 |   if (s == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   // Copy the NUL terminator. | 
 |   return reinterpret_cast<char *>(OPENSSL_memdup(s, strlen(s) + 1)); | 
 | } | 
 |  | 
 | int OPENSSL_isalpha(int c) { | 
 |   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); | 
 | } | 
 |  | 
 | int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; } | 
 |  | 
 | int OPENSSL_isxdigit(int c) { | 
 |   return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); | 
 | } | 
 |  | 
 | int OPENSSL_fromxdigit(uint8_t *out, int c) { | 
 |   if (OPENSSL_isdigit(c)) { | 
 |     *out = c - '0'; | 
 |     return 1; | 
 |   } | 
 |   if ('a' <= c && c <= 'f') { | 
 |     *out = c - 'a' + 10; | 
 |     return 1; | 
 |   } | 
 |   if ('A' <= c && c <= 'F') { | 
 |     *out = c - 'A' + 10; | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); } | 
 |  | 
 | int OPENSSL_tolower(int c) { | 
 |   if (c >= 'A' && c <= 'Z') { | 
 |     return c + ('a' - 'A'); | 
 |   } | 
 |   return c; | 
 | } | 
 |  | 
 | int OPENSSL_isspace(int c) { | 
 |   return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || | 
 |          c == ' '; | 
 | } | 
 |  | 
 | int OPENSSL_strcasecmp(const char *a, const char *b) { | 
 |   for (size_t i = 0;; i++) { | 
 |     const int aa = OPENSSL_tolower(a[i]); | 
 |     const int bb = OPENSSL_tolower(b[i]); | 
 |  | 
 |     if (aa < bb) { | 
 |       return -1; | 
 |     } else if (aa > bb) { | 
 |       return 1; | 
 |     } else if (aa == 0) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { | 
 |   for (size_t i = 0; i < n; i++) { | 
 |     const int aa = OPENSSL_tolower(a[i]); | 
 |     const int bb = OPENSSL_tolower(b[i]); | 
 |  | 
 |     if (aa < bb) { | 
 |       return -1; | 
 |     } else if (aa > bb) { | 
 |       return 1; | 
 |     } else if (aa == 0) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int BIO_snprintf(char *buf, size_t n, const char *format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   int ret = BIO_vsnprintf(buf, n, format, args); | 
 |   va_end(args); | 
 |   return ret; | 
 | } | 
 |  | 
 | int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { | 
 |   return vsnprintf(buf, n, format, args); | 
 | } | 
 |  | 
 | int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, | 
 |                                int system_malloc) { | 
 |   void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc; | 
 |   void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free; | 
 |   void *(*reallocate)(void *, size_t) = | 
 |       system_malloc ? realloc : OPENSSL_realloc; | 
 |   char *candidate = nullptr; | 
 |   size_t candidate_len = 64;  // TODO(bbe) what's the best initial size? | 
 |   int ret; | 
 |  | 
 |   if ((candidate = reinterpret_cast<char *>(allocate(candidate_len))) == | 
 |       nullptr) { | 
 |     goto err; | 
 |   } | 
 |   va_list args_copy; | 
 |   va_copy(args_copy, args); | 
 |   ret = vsnprintf(candidate, candidate_len, format, args_copy); | 
 |   va_end(args_copy); | 
 |   if (ret < 0) { | 
 |     goto err; | 
 |   } | 
 |   if ((size_t)ret >= candidate_len) { | 
 |     // Too big to fit in allocation. | 
 |     char *tmp; | 
 |  | 
 |     candidate_len = (size_t)ret + 1; | 
 |     if ((tmp = reinterpret_cast<char *>( | 
 |              reallocate(candidate, candidate_len))) == nullptr) { | 
 |       goto err; | 
 |     } | 
 |     candidate = tmp; | 
 |     ret = vsnprintf(candidate, candidate_len, format, args); | 
 |   } | 
 |   // At this point this should not happen unless vsnprintf is insane. | 
 |   if (ret < 0 || (size_t)ret >= candidate_len) { | 
 |     goto err; | 
 |   } | 
 |   *str = candidate; | 
 |   return ret; | 
 |  | 
 | err: | 
 |   deallocate(candidate); | 
 |   *str = nullptr; | 
 |   errno = ENOMEM; | 
 |   return -1; | 
 | } | 
 |  | 
 | int OPENSSL_vasprintf(char **str, const char *format, va_list args) { | 
 |   return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0); | 
 | } | 
 |  | 
 | int OPENSSL_asprintf(char **str, const char *format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   int ret = OPENSSL_vasprintf(str, format, args); | 
 |   va_end(args); | 
 |   return ret; | 
 | } | 
 |  | 
 | char *OPENSSL_strndup(const char *str, size_t size) { | 
 |   size = OPENSSL_strnlen(str, size); | 
 |  | 
 |   size_t alloc_size = size + 1; | 
 |   if (alloc_size < size) { | 
 |     // overflow | 
 |     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); | 
 |     return nullptr; | 
 |   } | 
 |   char *ret = reinterpret_cast<char *>(OPENSSL_malloc(alloc_size)); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(ret, str, size); | 
 |   ret[size] = '\0'; | 
 |   return ret; | 
 | } | 
 |  | 
 | size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) { | 
 |   size_t l = 0; | 
 |  | 
 |   for (; dst_size > 1 && *src; dst_size--) { | 
 |     *dst++ = *src++; | 
 |     l++; | 
 |   } | 
 |  | 
 |   if (dst_size) { | 
 |     *dst = 0; | 
 |   } | 
 |  | 
 |   return l + strlen(src); | 
 | } | 
 |  | 
 | size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) { | 
 |   size_t l = 0; | 
 |   for (; dst_size > 0 && *dst; dst_size--, dst++) { | 
 |     l++; | 
 |   } | 
 |   return l + OPENSSL_strlcpy(dst, src, dst_size); | 
 | } | 
 |  | 
 | void *OPENSSL_memdup(const void *data, size_t size) { | 
 |   if (size == 0) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   void *ret = OPENSSL_malloc(size); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(ret, data, size); | 
 |   return ret; | 
 | } | 
 |  | 
 | void *CRYPTO_malloc(size_t size, const char *file, int line) { | 
 |   return OPENSSL_malloc(size); | 
 | } | 
 |  | 
 | void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) { | 
 |   return OPENSSL_realloc(ptr, new_size); | 
 | } | 
 |  | 
 | void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); } |