| // Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/ec.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <string.h> | 
 |  | 
 | #include <iterator> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/nid.h> | 
 |  | 
 | #include "../../internal.h" | 
 | #include "../bn/internal.h" | 
 | #include "../delocate.h" | 
 | #include "internal.h" | 
 |  | 
 | #include "builtin_curves.h" | 
 |  | 
 |  | 
 | static void ec_point_free(EC_POINT *point, int free_group); | 
 |  | 
 | static void ec_group_init_static_mont(BN_MONT_CTX *mont, size_t num_words, | 
 |                                       const BN_ULONG *modulus, | 
 |                                       const BN_ULONG *rr, uint64_t n0) { | 
 |   bn_set_static_words(&mont->N, modulus, num_words); | 
 |   bn_set_static_words(&mont->RR, rr, num_words); | 
 | #if defined(OPENSSL_64_BIT) | 
 |   mont->n0[0] = n0; | 
 | #elif defined(OPENSSL_32_BIT) | 
 |   mont->n0[0] = (uint32_t)n0; | 
 |   mont->n0[1] = (uint32_t)(n0 >> 32); | 
 | #else | 
 | #error "unknown word length" | 
 | #endif | 
 | } | 
 |  | 
 | static void ec_group_set_a_minus3(EC_GROUP *group) { | 
 |   const EC_FELEM *one = ec_felem_one(group); | 
 |   group->a_is_minus3 = 1; | 
 |   ec_felem_neg(group, &group->a, one); | 
 |   ec_felem_sub(group, &group->a, &group->a, one); | 
 |   ec_felem_sub(group, &group->a, &group->a, one); | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p224) { | 
 |   out->curve_name = NID_secp224r1; | 
 |   out->comment = "NIST P-224"; | 
 |   static const uint8_t kOIDP224[] = {OBJ_ENC_secp224r1}; | 
 |   static_assert(sizeof(kOIDP224) <= sizeof(out->oid)); | 
 |   OPENSSL_memcpy(out->oid, kOIDP224, sizeof(kOIDP224)); | 
 |   out->oid_len = sizeof(kOIDP224); | 
 |  | 
 |   ec_group_init_static_mont(&out->field, std::size(kP224Field), kP224Field, | 
 |                             kP224FieldRR, kP224FieldN0); | 
 |   ec_group_init_static_mont(&out->order, std::size(kP224Order), kP224Order, | 
 |                             kP224OrderRR, kP224OrderN0); | 
 |  | 
 | #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) | 
 |   out->meth = EC_GFp_nistp224_method(); | 
 |   OPENSSL_memcpy(out->generator.raw.X.words, kP224GX, sizeof(kP224GX)); | 
 |   OPENSSL_memcpy(out->generator.raw.Y.words, kP224GY, sizeof(kP224GY)); | 
 |   out->generator.raw.Z.words[0] = 1; | 
 |   OPENSSL_memcpy(out->b.words, kP224B, sizeof(kP224B)); | 
 | #else | 
 |   out->meth = EC_GFp_mont_method(); | 
 |   OPENSSL_memcpy(out->generator.raw.X.words, kP224MontGX, sizeof(kP224MontGX)); | 
 |   OPENSSL_memcpy(out->generator.raw.Y.words, kP224MontGY, sizeof(kP224MontGY)); | 
 |   OPENSSL_memcpy(out->generator.raw.Z.words, kP224FieldR, sizeof(kP224FieldR)); | 
 |   OPENSSL_memcpy(out->b.words, kP224MontB, sizeof(kP224MontB)); | 
 | #endif | 
 |   out->generator.group = out; | 
 |  | 
 |   ec_group_set_a_minus3(out); | 
 |   out->has_order = 1; | 
 |   out->field_greater_than_order = 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p256) { | 
 |   out->curve_name = NID_X9_62_prime256v1; | 
 |   out->comment = "NIST P-256"; | 
 |   static const uint8_t kOIDP256[] = {OBJ_ENC_X9_62_prime256v1}; | 
 |   static_assert(sizeof(kOIDP256) <= sizeof(out->oid)); | 
 |   OPENSSL_memcpy(out->oid, kOIDP256, sizeof(kOIDP256)); | 
 |   out->oid_len = sizeof(kOIDP256); | 
 |  | 
 |   ec_group_init_static_mont(&out->field, std::size(kP256Field), kP256Field, | 
 |                             kP256FieldRR, kP256FieldN0); | 
 |   ec_group_init_static_mont(&out->order, std::size(kP256Order), kP256Order, | 
 |                             kP256OrderRR, kP256OrderN0); | 
 |  | 
 | #if !defined(OPENSSL_NO_ASM) &&                              \ | 
 |     (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \ | 
 |     !defined(OPENSSL_SMALL) | 
 |   out->meth = EC_GFp_nistz256_method(); | 
 | #else | 
 |   out->meth = EC_GFp_nistp256_method(); | 
 | #endif | 
 |   out->generator.group = out; | 
 |   OPENSSL_memcpy(out->generator.raw.X.words, kP256MontGX, sizeof(kP256MontGX)); | 
 |   OPENSSL_memcpy(out->generator.raw.Y.words, kP256MontGY, sizeof(kP256MontGY)); | 
 |   OPENSSL_memcpy(out->generator.raw.Z.words, kP256FieldR, sizeof(kP256FieldR)); | 
 |   OPENSSL_memcpy(out->b.words, kP256MontB, sizeof(kP256MontB)); | 
 |  | 
 |   ec_group_set_a_minus3(out); | 
 |   out->has_order = 1; | 
 |   out->field_greater_than_order = 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p384) { | 
 |   out->curve_name = NID_secp384r1; | 
 |   out->comment = "NIST P-384"; | 
 |   static const uint8_t kOIDP384[] = {OBJ_ENC_secp384r1}; | 
 |   static_assert(sizeof(kOIDP384) <= sizeof(out->oid)); | 
 |   OPENSSL_memcpy(out->oid, kOIDP384, sizeof(kOIDP384)); | 
 |   out->oid_len = sizeof(kOIDP384); | 
 |  | 
 |   ec_group_init_static_mont(&out->field, std::size(kP384Field), kP384Field, | 
 |                             kP384FieldRR, kP384FieldN0); | 
 |   ec_group_init_static_mont(&out->order, std::size(kP384Order), kP384Order, | 
 |                             kP384OrderRR, kP384OrderN0); | 
 |  | 
 |   out->meth = EC_GFp_mont_method(); | 
 |   out->generator.group = out; | 
 |   OPENSSL_memcpy(out->generator.raw.X.words, kP384MontGX, sizeof(kP384MontGX)); | 
 |   OPENSSL_memcpy(out->generator.raw.Y.words, kP384MontGY, sizeof(kP384MontGY)); | 
 |   OPENSSL_memcpy(out->generator.raw.Z.words, kP384FieldR, sizeof(kP384FieldR)); | 
 |   OPENSSL_memcpy(out->b.words, kP384MontB, sizeof(kP384MontB)); | 
 |  | 
 |   ec_group_set_a_minus3(out); | 
 |   out->has_order = 1; | 
 |   out->field_greater_than_order = 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p521) { | 
 |   out->curve_name = NID_secp521r1; | 
 |   out->comment = "NIST P-521"; | 
 |   static const uint8_t kOIDP521[] = {OBJ_ENC_secp521r1}; | 
 |   static_assert(sizeof(kOIDP521) <= sizeof(out->oid)); | 
 |   OPENSSL_memcpy(out->oid, kOIDP521, sizeof(kOIDP521)); | 
 |   out->oid_len = sizeof(kOIDP521); | 
 |  | 
 |   ec_group_init_static_mont(&out->field, std::size(kP521Field), kP521Field, | 
 |                             kP521FieldRR, kP521FieldN0); | 
 |   ec_group_init_static_mont(&out->order, std::size(kP521Order), kP521Order, | 
 |                             kP521OrderRR, kP521OrderN0); | 
 |  | 
 |   out->meth = EC_GFp_mont_method(); | 
 |   out->generator.group = out; | 
 |   OPENSSL_memcpy(out->generator.raw.X.words, kP521MontGX, sizeof(kP521MontGX)); | 
 |   OPENSSL_memcpy(out->generator.raw.Y.words, kP521MontGY, sizeof(kP521MontGY)); | 
 |   OPENSSL_memcpy(out->generator.raw.Z.words, kP521FieldR, sizeof(kP521FieldR)); | 
 |   OPENSSL_memcpy(out->b.words, kP521MontB, sizeof(kP521MontB)); | 
 |  | 
 |   ec_group_set_a_minus3(out); | 
 |   out->has_order = 1; | 
 |   out->field_greater_than_order = 1; | 
 | } | 
 |  | 
 | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, | 
 |                                  const BIGNUM *b, BN_CTX *ctx) { | 
 |   if (BN_num_bytes(p) > EC_MAX_BYTES) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<BN_CTX> new_ctx; | 
 |   if (ctx == nullptr) { | 
 |     new_ctx.reset(BN_CTX_new()); | 
 |     if (new_ctx == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     ctx = new_ctx.get(); | 
 |   } | 
 |  | 
 |   // Historically, |a| and |b| were not required to be fully reduced. | 
 |   // TODO(davidben): Can this be removed? | 
 |   bssl::BN_CTXScope scope(ctx); | 
 |   BIGNUM *a_reduced = BN_CTX_get(ctx); | 
 |   BIGNUM *b_reduced = BN_CTX_get(ctx); | 
 |   if (a_reduced == nullptr || b_reduced == nullptr || | 
 |       !BN_nnmod(a_reduced, a, p, ctx) ||  // | 
 |       !BN_nnmod(b_reduced, b, p, ctx)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EC_GROUP> ret( | 
 |       reinterpret_cast<EC_GROUP *>(OPENSSL_zalloc(sizeof(EC_GROUP)))); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   ret->references = 1; | 
 |   ret->meth = EC_GFp_mont_method(); | 
 |   bn_mont_ctx_init(&ret->field); | 
 |   bn_mont_ctx_init(&ret->order); | 
 |   ret->generator.group = ret.get(); | 
 |   if (!ec_GFp_simple_group_set_curve(ret.get(), p, a_reduced, b_reduced, ctx)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   return ret.release(); | 
 | } | 
 |  | 
 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, | 
 |                            const BIGNUM *order, const BIGNUM *cofactor) { | 
 |   if (group->curve_name != NID_undef || group->has_order || | 
 |       generator->group != group) { | 
 |     // |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by | 
 |     // |EC_GROUP_new_curve_GFp| and may only used once on each group. | 
 |     // |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a | 
 |     // copy, so that |generator->group->generator| is set correctly. | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BN_num_bytes(order) > EC_MAX_BYTES) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Require a cofactor of one for custom curves, which implies prime order. | 
 |   if (!BN_is_one(cofactor)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Require that p < 2×order. This simplifies some ECDSA operations. | 
 |   // | 
 |   // Note any curve which did not satisfy this must have been invalid or use a | 
 |   // tiny prime (less than 17). See the proof in |field_element_to_scalar| in | 
 |   // the ECDSA implementation. | 
 |   bssl::UniquePtr<BIGNUM> tmp(BN_new()); | 
 |   if (tmp == nullptr || !BN_lshift1(tmp.get(), order)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_cmp(tmp.get(), &group->field.N) <= 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EC_AFFINE affine; | 
 |   if (!ec_jacobian_to_affine(group, &affine, &generator->raw) || | 
 |       !BN_MONT_CTX_set(&group->order, order, nullptr)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   group->field_greater_than_order = BN_cmp(&group->field.N, order) > 0; | 
 |   group->generator.raw.X = affine.X; | 
 |   group->generator.raw.Y = affine.Y; | 
 |   // |raw.Z| was set to 1 by |EC_GROUP_new_curve_GFp|. | 
 |   group->has_order = 1; | 
 |   return 1; | 
 | } | 
 |  | 
 | EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { | 
 |   switch (nid) { | 
 |     case NID_secp224r1: | 
 |       return (EC_GROUP *)EC_group_p224(); | 
 |     case NID_X9_62_prime256v1: | 
 |       return (EC_GROUP *)EC_group_p256(); | 
 |     case NID_secp384r1: | 
 |       return (EC_GROUP *)EC_group_p384(); | 
 |     case NID_secp521r1: | 
 |       return (EC_GROUP *)EC_group_p521(); | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
 |       return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | void EC_GROUP_free(EC_GROUP *group) { | 
 |   if (group == nullptr || | 
 |       // Built-in curves are static. | 
 |       group->curve_name != NID_undef || | 
 |       !CRYPTO_refcount_dec_and_test_zero(&group->references)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   bn_mont_ctx_cleanup(&group->order); | 
 |   bn_mont_ctx_cleanup(&group->field); | 
 |   OPENSSL_free(group); | 
 | } | 
 |  | 
 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { | 
 |   if (a == nullptr || | 
 |       // Built-in curves are static. | 
 |       a->curve_name != NID_undef) { | 
 |     return (EC_GROUP *)a; | 
 |   } | 
 |  | 
 |   // Groups are logically immutable (but for |EC_GROUP_set_generator| which must | 
 |   // be called early on), so we simply take a reference. | 
 |   EC_GROUP *group = (EC_GROUP *)a; | 
 |   CRYPTO_refcount_inc(&group->references); | 
 |   return group; | 
 | } | 
 |  | 
 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) { | 
 |   // Note this function returns 0 if equal and non-zero otherwise. | 
 |   if (a == b) { | 
 |     return 0; | 
 |   } | 
 |   if (a->curve_name != b->curve_name) { | 
 |     return 1; | 
 |   } | 
 |   if (a->curve_name != NID_undef) { | 
 |     // Built-in curves may be compared by curve name alone. | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // |a| and |b| are both custom curves. We compare the entire curve | 
 |   // structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes, | 
 |   // custom curve construction is sadly done in two parts) but otherwise not the | 
 |   // same object, we consider them always unequal. | 
 |   return a->meth != b->meth ||  // | 
 |          !a->has_order || !b->has_order || | 
 |          BN_cmp(&a->order.N, &b->order.N) != 0 || | 
 |          BN_cmp(&a->field.N, &b->field.N) != 0 || | 
 |          !ec_felem_equal(a, &a->a, &b->a) ||  // | 
 |          !ec_felem_equal(a, &a->b, &b->b) || | 
 |          !ec_GFp_simple_points_equal(a, &a->generator.raw, &b->generator.raw); | 
 | } | 
 |  | 
 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { | 
 |   return group->has_order ? &group->generator : nullptr; | 
 | } | 
 |  | 
 | const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { | 
 |   assert(group->has_order); | 
 |   return &group->order.N; | 
 | } | 
 |  | 
 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { | 
 |   if (BN_copy(order, EC_GROUP_get0_order(group)) == nullptr) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_GROUP_order_bits(const EC_GROUP *group) { | 
 |   return BN_num_bits(&group->order.N); | 
 | } | 
 |  | 
 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, | 
 |                           BN_CTX *ctx) { | 
 |   // All |EC_GROUP|s have cofactor 1. | 
 |   return BN_set_word(cofactor, 1); | 
 | } | 
 |  | 
 | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, | 
 |                            BIGNUM *out_b, BN_CTX *ctx) { | 
 |   return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b); | 
 | } | 
 |  | 
 | int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } | 
 |  | 
 | unsigned EC_GROUP_get_degree(const EC_GROUP *group) { | 
 |   return BN_num_bits(&group->field.N); | 
 | } | 
 |  | 
 | const char *EC_curve_nid2nist(int nid) { | 
 |   switch (nid) { | 
 |     case NID_secp224r1: | 
 |       return "P-224"; | 
 |     case NID_X9_62_prime256v1: | 
 |       return "P-256"; | 
 |     case NID_secp384r1: | 
 |       return "P-384"; | 
 |     case NID_secp521r1: | 
 |       return "P-521"; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | int EC_curve_nist2nid(const char *name) { | 
 |   if (strcmp(name, "P-224") == 0) { | 
 |     return NID_secp224r1; | 
 |   } | 
 |   if (strcmp(name, "P-256") == 0) { | 
 |     return NID_X9_62_prime256v1; | 
 |   } | 
 |   if (strcmp(name, "P-384") == 0) { | 
 |     return NID_secp384r1; | 
 |   } | 
 |   if (strcmp(name, "P-521") == 0) { | 
 |     return NID_secp521r1; | 
 |   } | 
 |   return NID_undef; | 
 | } | 
 |  | 
 | EC_POINT *EC_POINT_new(const EC_GROUP *group) { | 
 |   if (group == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   EC_POINT *ret = reinterpret_cast<EC_POINT *>(OPENSSL_malloc(sizeof *ret)); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   ret->group = EC_GROUP_dup(group); | 
 |   ec_GFp_simple_point_init(&ret->raw); | 
 |   return ret; | 
 | } | 
 |  | 
 | static void ec_point_free(EC_POINT *point, int free_group) { | 
 |   if (!point) { | 
 |     return; | 
 |   } | 
 |   if (free_group) { | 
 |     EC_GROUP_free(point->group); | 
 |   } | 
 |   OPENSSL_free(point); | 
 | } | 
 |  | 
 | void EC_POINT_free(EC_POINT *point) { | 
 |   ec_point_free(point, 1 /* free group */); | 
 | } | 
 |  | 
 | void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } | 
 |  | 
 | int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { | 
 |   if (EC_GROUP_cmp(dest->group, src->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   if (dest == src) { | 
 |     return 1; | 
 |   } | 
 |   ec_GFp_simple_point_copy(&dest->raw, &src->raw); | 
 |   return 1; | 
 | } | 
 |  | 
 | EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { | 
 |   if (a == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   EC_POINT *ret = EC_POINT_new(group); | 
 |   if (ret == nullptr || !EC_POINT_copy(ret, a)) { | 
 |     EC_POINT_free(ret); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { | 
 |   if (EC_GROUP_cmp(group, point->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   ec_GFp_simple_point_set_to_infinity(group, &point->raw); | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { | 
 |   if (EC_GROUP_cmp(group, point->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   return ec_GFp_simple_is_at_infinity(group, &point->raw); | 
 | } | 
 |  | 
 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, | 
 |                          BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, point->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   return ec_GFp_simple_is_on_curve(group, &point->raw); | 
 | } | 
 |  | 
 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, | 
 |                  BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, a->group, nullptr) != 0 || | 
 |       EC_GROUP_cmp(group, b->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return -1; | 
 |   } | 
 |  | 
 |   // Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality. | 
 |   return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1; | 
 | } | 
 |  | 
 | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, | 
 |                                         const EC_POINT *point, BIGNUM *x, | 
 |                                         BIGNUM *y, BN_CTX *ctx) { | 
 |   if (group->meth->point_get_affine_coordinates == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |   if (EC_GROUP_cmp(group, point->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   EC_FELEM x_felem, y_felem; | 
 |   if (!group->meth->point_get_affine_coordinates( | 
 |           group, &point->raw, x == nullptr ? nullptr : &x_felem, | 
 |           y == nullptr ? nullptr : &y_felem) || | 
 |       (x != nullptr && !ec_felem_to_bignum(group, x, &x_felem)) || | 
 |       (y != nullptr && !ec_felem_to_bignum(group, y, &y_felem))) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_get_affine_coordinates(const EC_GROUP *group, | 
 |                                     const EC_POINT *point, BIGNUM *x, BIGNUM *y, | 
 |                                     BN_CTX *ctx) { | 
 |   return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx); | 
 | } | 
 |  | 
 | void ec_affine_to_jacobian(const EC_GROUP *group, EC_JACOBIAN *out, | 
 |                            const EC_AFFINE *p) { | 
 |   out->X = p->X; | 
 |   out->Y = p->Y; | 
 |   out->Z = *ec_felem_one(group); | 
 | } | 
 |  | 
 | int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out, | 
 |                           const EC_JACOBIAN *p) { | 
 |   return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y); | 
 | } | 
 |  | 
 | int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, | 
 |                                 const EC_JACOBIAN *in, size_t num) { | 
 |   if (group->meth->jacobian_to_affine_batch == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |   return group->meth->jacobian_to_affine_batch(group, out, in, num); | 
 | } | 
 |  | 
 | int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out, | 
 |                                     const EC_FELEM *x, const EC_FELEM *y) { | 
 |   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
 |                           const EC_FELEM *b) = group->meth->felem_mul; | 
 |   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
 |       group->meth->felem_sqr; | 
 |  | 
 |   // Check if the point is on the curve. | 
 |   EC_FELEM lhs, rhs; | 
 |   felem_sqr(group, &lhs, y);                   // lhs = y^2 | 
 |   felem_sqr(group, &rhs, x);                   // rhs = x^2 | 
 |   ec_felem_add(group, &rhs, &rhs, &group->a);  // rhs = x^2 + a | 
 |   felem_mul(group, &rhs, &rhs, x);             // rhs = x^3 + ax | 
 |   ec_felem_add(group, &rhs, &rhs, &group->b);  // rhs = x^3 + ax + b | 
 |   if (!ec_felem_equal(group, &lhs, &rhs)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE); | 
 |     // In the event of an error, defend against the caller not checking the | 
 |     // return value by setting a known safe value. Note this may not be possible | 
 |     // if the caller is in the process of constructing an arbitrary group and | 
 |     // the generator is missing. | 
 |     if (group->has_order) { | 
 |       out->X = group->generator.raw.X; | 
 |       out->Y = group->generator.raw.Y; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   out->X = *x; | 
 |   out->Y = *y; | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | 
 |                                         const BIGNUM *x, const BIGNUM *y, | 
 |                                         BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, point->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (x == nullptr || y == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EC_FELEM x_felem, y_felem; | 
 |   EC_AFFINE affine; | 
 |   if (!ec_bignum_to_felem(group, &x_felem, x) || | 
 |       !ec_bignum_to_felem(group, &y_felem, y) || | 
 |       !ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) { | 
 |     // In the event of an error, defend against the caller not checking the | 
 |     // return value by setting a known safe value. | 
 |     ec_set_to_safe_point(group, &point->raw); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ec_affine_to_jacobian(group, &point->raw, &affine); | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | 
 |                                     const BIGNUM *x, const BIGNUM *y, | 
 |                                     BN_CTX *ctx) { | 
 |   return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx); | 
 | } | 
 |  | 
 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
 |                  const EC_POINT *b, BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, r->group, nullptr) != 0 || | 
 |       EC_GROUP_cmp(group, a->group, nullptr) != 0 || | 
 |       EC_GROUP_cmp(group, b->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   group->meth->add(group, &r->raw, &a->raw, &b->raw); | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
 |                  BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, r->group, nullptr) != 0 || | 
 |       EC_GROUP_cmp(group, a->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   group->meth->dbl(group, &r->raw, &a->raw); | 
 |   return 1; | 
 | } | 
 |  | 
 |  | 
 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { | 
 |   if (EC_GROUP_cmp(group, a->group, nullptr) != 0) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |   ec_GFp_simple_invert(group, &a->raw); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
 |                                       const BIGNUM *in, BN_CTX *ctx) { | 
 |   if (ec_bignum_to_scalar(group, out, in)) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   ERR_clear_error(); | 
 |  | 
 |   // This is an unusual input, so we do not guarantee constant-time processing. | 
 |   bssl::BN_CTXScope scope(ctx); | 
 |   BIGNUM *tmp = BN_CTX_get(ctx); | 
 |   return tmp != nullptr && BN_nnmod(tmp, in, EC_GROUP_get0_order(group), ctx) && | 
 |          ec_bignum_to_scalar(group, out, tmp); | 
 | } | 
 |  | 
 | int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r, | 
 |                               const BIGNUM *g_scalar, const EC_POINT *p, | 
 |                               const BIGNUM *p_scalar, BN_CTX *ctx) { | 
 |   // Previously, this function set |r| to the point at infinity if there was | 
 |   // nothing to multiply. But, nobody should be calling this function with | 
 |   // nothing to multiply in the first place. | 
 |   if ((g_scalar == nullptr && p_scalar == nullptr) || | 
 |       (p == nullptr) != (p_scalar == nullptr)) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (EC_GROUP_cmp(group, r->group, nullptr) != 0 || | 
 |       (p != nullptr && EC_GROUP_cmp(group, p->group, nullptr) != 0)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<BN_CTX> new_ctx; | 
 |   if (ctx == nullptr) { | 
 |     new_ctx.reset(BN_CTX_new()); | 
 |     if (new_ctx == nullptr) { | 
 |       return 0; | 
 |     } | 
 |     ctx = new_ctx.get(); | 
 |   } | 
 |  | 
 |   // If both |g_scalar| and |p_scalar| are non-NULL, | 
 |   // |ec_point_mul_scalar_public| would share the doublings between the two | 
 |   // products, which would be more efficient. However, we conservatively assume | 
 |   // the caller needs a constant-time operation. (ECDSA verification does not | 
 |   // use this function.) | 
 |   // | 
 |   // Previously, the low-level constant-time multiplication function aligned | 
 |   // with this function's calling convention, but this was misleading. Curves | 
 |   // which combined the two multiplications did not avoid the doubling case | 
 |   // in the incomplete addition formula and were not constant-time. | 
 |  | 
 |   if (g_scalar != nullptr) { | 
 |     EC_SCALAR scalar; | 
 |     if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) || | 
 |         !ec_point_mul_scalar_base(group, &r->raw, &scalar)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (p_scalar != nullptr) { | 
 |     EC_SCALAR scalar; | 
 |     EC_JACOBIAN tmp; | 
 |     if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) || | 
 |         !ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) { | 
 |       return 0; | 
 |     } | 
 |     if (g_scalar == nullptr) { | 
 |       OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_JACOBIAN)); | 
 |     } else { | 
 |       group->meth->add(group, &r->raw, &r->raw, &tmp); | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | 
 |                  const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { | 
 |   boringssl_ensure_ecc_self_test(); | 
 |  | 
 |   return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx); | 
 | } | 
 |  | 
 | int ec_point_mul_scalar_public(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                                const EC_SCALAR *g_scalar, const EC_JACOBIAN *p, | 
 |                                const EC_SCALAR *p_scalar) { | 
 |   if (g_scalar == nullptr || p_scalar == nullptr || p == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (group->meth->mul_public == nullptr) { | 
 |     return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1); | 
 |   } | 
 |  | 
 |   group->meth->mul_public(group, r, g_scalar, p, p_scalar); | 
 |   return 1; | 
 | } | 
 |  | 
 | int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                                      const EC_SCALAR *g_scalar, | 
 |                                      const EC_JACOBIAN *points, | 
 |                                      const EC_SCALAR *scalars, size_t num) { | 
 |   if (group->meth->mul_public_batch == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return group->meth->mul_public_batch(group, r, g_scalar, points, scalars, | 
 |                                        num); | 
 | } | 
 |  | 
 | int ec_point_mul_scalar(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                         const EC_JACOBIAN *p, const EC_SCALAR *scalar) { | 
 |   if (p == nullptr || scalar == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   group->meth->mul(group, r, p, scalar); | 
 |  | 
 |   // Check the result is on the curve to defend against fault attacks or bugs. | 
 |   // This has negligible cost compared to the multiplication. | 
 |   if (!ec_GFp_simple_is_on_curve(group, r)) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int ec_point_mul_scalar_base(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                              const EC_SCALAR *scalar) { | 
 |   if (scalar == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   group->meth->mul_base(group, r, scalar); | 
 |  | 
 |   // Check the result is on the curve to defend against fault attacks or bugs. | 
 |   // This has negligible cost compared to the multiplication. This can only | 
 |   // happen on bug or CPU fault, so it okay to leak this. The alternative would | 
 |   // be to proceed with bad data. | 
 |   if (!constant_time_declassify_int(ec_GFp_simple_is_on_curve(group, r))) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                               const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, | 
 |                               const EC_JACOBIAN *p1, const EC_SCALAR *scalar1, | 
 |                               const EC_JACOBIAN *p2, const EC_SCALAR *scalar2) { | 
 |   if (group->meth->mul_batch == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2); | 
 |  | 
 |   // Check the result is on the curve to defend against fault attacks or bugs. | 
 |   // This has negligible cost compared to the multiplication. | 
 |   if (!ec_GFp_simple_is_on_curve(group, r)) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, | 
 |                     const EC_JACOBIAN *p) { | 
 |   if (group->meth->init_precomp == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return group->meth->init_precomp(group, out, p); | 
 | } | 
 |  | 
 | int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                                 const EC_PRECOMP *p0, const EC_SCALAR *scalar0, | 
 |                                 const EC_PRECOMP *p1, const EC_SCALAR *scalar1, | 
 |                                 const EC_PRECOMP *p2, | 
 |                                 const EC_SCALAR *scalar2) { | 
 |   if (group->meth->mul_precomp == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2); | 
 |  | 
 |   // Check the result is on the curve to defend against fault attacks or bugs. | 
 |   // This has negligible cost compared to the multiplication. | 
 |   if (!ec_GFp_simple_is_on_curve(group, r)) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | void ec_point_select(const EC_GROUP *group, EC_JACOBIAN *out, BN_ULONG mask, | 
 |                      const EC_JACOBIAN *a, const EC_JACOBIAN *b) { | 
 |   ec_felem_select(group, &out->X, mask, &a->X, &b->X); | 
 |   ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); | 
 |   ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z); | 
 | } | 
 |  | 
 | void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask, | 
 |                       const EC_AFFINE *a, const EC_AFFINE *b) { | 
 |   ec_felem_select(group, &out->X, mask, &a->X, &b->X); | 
 |   ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); | 
 | } | 
 |  | 
 | void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask, | 
 |                        const EC_PRECOMP *a, const EC_PRECOMP *b) { | 
 |   static_assert(sizeof(out->comb) == sizeof(*out), | 
 |                 "out->comb does not span the entire structure"); | 
 |   for (size_t i = 0; i < std::size(out->comb); i++) { | 
 |     ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]); | 
 |   } | 
 | } | 
 |  | 
 | int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p, | 
 |                         const EC_SCALAR *r) { | 
 |   return group->meth->cmp_x_coordinate(group, p, r); | 
 | } | 
 |  | 
 | int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
 |                                   const EC_JACOBIAN *p) { | 
 |   uint8_t bytes[EC_MAX_BYTES]; | 
 |   size_t len; | 
 |   if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The x-coordinate is bounded by p, but we need a scalar, bounded by the | 
 |   // order. These may not have the same size. However, we must have p < 2×order, | 
 |   // assuming p is not tiny (p >= 17). | 
 |   // | 
 |   // Thus |bytes| will fit in |order.width + 1| words, and we can reduce by | 
 |   // performing at most one subtraction. | 
 |   // | 
 |   // Proof: We only work with prime order curves, so the number of points on | 
 |   // the curve is the order. Thus Hasse's theorem gives: | 
 |   // | 
 |   //     |order - (p + 1)| <= 2×sqrt(p) | 
 |   //         p + 1 - order <= 2×sqrt(p) | 
 |   //     p + 1 - 2×sqrt(p) <= order | 
 |   //       p + 1 - 2×(p/4)  < order       (p/4 > sqrt(p) for p >= 17) | 
 |   //         p/2 < p/2 + 1  < order | 
 |   //                     p  < 2×order | 
 |   // | 
 |   // Additionally, one can manually check this property for built-in curves. It | 
 |   // is enforced for legacy custom curves in |EC_GROUP_set_generator|. | 
 |   const BIGNUM *order = EC_GROUP_get0_order(group); | 
 |   BN_ULONG words[EC_MAX_WORDS + 1] = {0}; | 
 |   bn_big_endian_to_words(words, order->width + 1, bytes, len); | 
 |   bn_reduce_once(out->words, words, /*carry=*/words[order->width], order->d, | 
 |                  order->width); | 
 |   return 1; | 
 | } | 
 |  | 
 | int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out, | 
 |                                  size_t *out_len, size_t max_out, | 
 |                                  const EC_JACOBIAN *p) { | 
 |   size_t len = BN_num_bytes(&group->field.N); | 
 |   assert(len <= EC_MAX_BYTES); | 
 |   if (max_out < len) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EC_FELEM x; | 
 |   if (!group->meth->point_get_affine_coordinates(group, p, &x, nullptr)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ec_felem_to_bytes(group, out, out_len, &x); | 
 |   *out_len = len; | 
 |   return 1; | 
 | } | 
 |  | 
 | void ec_set_to_safe_point(const EC_GROUP *group, EC_JACOBIAN *out) { | 
 |   if (group->has_order) { | 
 |     ec_GFp_simple_point_copy(out, &group->generator.raw); | 
 |   } else { | 
 |     // The generator can be missing if the caller is in the process of | 
 |     // constructing an arbitrary group. In this case, we give up and use the | 
 |     // point at infinity. | 
 |     ec_GFp_simple_point_set_to_infinity(group, out); | 
 |   } | 
 | } | 
 |  | 
 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {} | 
 |  | 
 | int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { | 
 |   return OPENSSL_EC_NAMED_CURVE; | 
 | } | 
 |  | 
 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { | 
 |   // This function exists purely to give callers a way to call | 
 |   // |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of| | 
 |   // returns NULL, so return some other garbage pointer. | 
 |   return (const EC_METHOD *)0x12340000; | 
 | } | 
 |  | 
 | int EC_METHOD_get_field_type(const EC_METHOD *meth) { | 
 |   return NID_X9_62_prime_field; | 
 | } | 
 |  | 
 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, | 
 |                                         point_conversion_form_t form) { | 
 |   if (form != POINT_CONVERSION_UNCOMPRESSED) { | 
 |     abort(); | 
 |   } | 
 | } |