| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/cipher.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "../../internal.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX)); |
| } |
| |
| EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { |
| EVP_CIPHER_CTX *ctx = reinterpret_cast<EVP_CIPHER_CTX *>( |
| OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))); |
| if (ctx) { |
| EVP_CIPHER_CTX_init(ctx); |
| } |
| return ctx; |
| } |
| |
| int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { |
| if (c->cipher != nullptr && c->cipher->cleanup) { |
| c->cipher->cleanup(c); |
| } |
| OPENSSL_free(c->cipher_data); |
| |
| OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX)); |
| return 1; |
| } |
| |
| void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { |
| if (ctx) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { |
| if (in == nullptr || in->cipher == nullptr) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED); |
| return 0; |
| } |
| |
| if (in->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| EVP_CIPHER_CTX_cleanup(out); |
| OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX)); |
| |
| if (in->cipher_data && in->cipher->ctx_size) { |
| out->cipher_data = OPENSSL_memdup(in->cipher_data, in->cipher->ctx_size); |
| if (!out->cipher_data) { |
| out->cipher = nullptr; |
| return 0; |
| } |
| } |
| |
| if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) { |
| if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { |
| out->cipher = nullptr; |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| EVP_CIPHER_CTX_init(ctx); |
| return 1; |
| } |
| |
| int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *engine, const uint8_t *key, const uint8_t *iv, |
| int enc) { |
| if (enc == -1) { |
| enc = ctx->encrypt; |
| } else { |
| if (enc) { |
| enc = 1; |
| } |
| ctx->encrypt = enc; |
| } |
| |
| if (cipher) { |
| // Ensure a context left from last time is cleared (the previous check |
| // attempted to avoid this if the same ENGINE and EVP_CIPHER could be |
| // used). |
| if (ctx->cipher) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| // Restore encrypt and flags |
| ctx->encrypt = enc; |
| } |
| |
| ctx->cipher = cipher; |
| if (ctx->cipher->ctx_size) { |
| ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size); |
| if (!ctx->cipher_data) { |
| ctx->cipher = nullptr; |
| return 0; |
| } |
| } else { |
| ctx->cipher_data = nullptr; |
| } |
| |
| ctx->key_len = cipher->key_len; |
| ctx->flags = 0; |
| |
| if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, nullptr)) { |
| ctx->cipher = nullptr; |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| } |
| } else if (!ctx->cipher) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
| return 0; |
| } |
| |
| // we assume block size is a power of 2 in *cryptUpdate |
| assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || |
| ctx->cipher->block_size == 16); |
| |
| if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) { |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| case EVP_CIPH_STREAM_CIPHER: |
| case EVP_CIPH_ECB_MODE: |
| break; |
| |
| case EVP_CIPH_CFB_MODE: |
| ctx->num = 0; |
| [[fallthrough]]; |
| |
| case EVP_CIPH_CBC_MODE: |
| assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); |
| if (iv) { |
| OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| } |
| OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); |
| break; |
| |
| case EVP_CIPH_CTR_MODE: |
| case EVP_CIPH_OFB_MODE: |
| ctx->num = 0; |
| // Don't reuse IV for CTR mode |
| if (iv) { |
| OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| } |
| break; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { |
| if (!ctx->cipher->init(ctx, key, iv, enc)) { |
| return 0; |
| } |
| } |
| |
| ctx->buf_len = 0; |
| ctx->final_used = 0; |
| // Clear the poisoned flag to permit reuse of a CTX that previously had a |
| // failed operation. |
| ctx->poisoned = 0; |
| return 1; |
| } |
| |
| int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); |
| } |
| |
| int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); |
| } |
| |
| // CopyToPrefix copies a span of bytes from |from| into |to|. It aborts if there |
| // is not enough space. |
| // |
| // TODO(crbug.com/404286922): Can we simplify this in a C++20 world (e.g. |
| // std::ranges::copy)? Must preserve range checking on the destination span. |
| static void CopyToPrefix(bssl::Span<const uint8_t> from, |
| bssl::Span<uint8_t> to) { |
| OPENSSL_memcpy(to.first(from.size()).data(), from.data(), from.size()); |
| } |
| |
| // block_remainder returns the number of bytes to remove from |len| to get a |
| // multiple of |ctx|'s block size. |
| static size_t block_remainder(const EVP_CIPHER_CTX *ctx, size_t len) { |
| // |block_size| must be a power of two. |
| assert(ctx->cipher->block_size != 0); |
| assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0); |
| return len & (ctx->cipher->block_size - 1); |
| } |
| |
| int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| *out_len = 0; |
| if (in_len < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); |
| return 0; |
| } |
| size_t in_len_sz = static_cast<size_t>(in_len); |
| size_t out_len_sz; |
| if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && out == nullptr) { |
| if (!EVP_CipherUpdateAAD(ctx, in, in_len_sz)) { |
| return 0; |
| } |
| out_len_sz = in_len_sz; // Even though no output was written! |
| } else { |
| // in_len_sz is < INT_MAX which is no more than half of SIZE_MAX. |
| size_t max_out_len = |
| std::min(in_len_sz + ctx->cipher->block_size - 1, size_t{INT_MAX}); |
| if (!EVP_EncryptUpdate_ex(ctx, out, &out_len_sz, max_out_len, in, |
| in_len_sz)) { |
| return 0; |
| } |
| } |
| *out_len = static_cast<int>(out_len_sz); |
| return 1; |
| } |
| |
| template <typename F> |
| static int WrapWithPoison(EVP_CIPHER_CTX *ctx, F f) { |
| if (ctx->poisoned) { |
| // |ctx| has been left in an indeterminate state by a previous failed |
| // operation. Do not allow proceeding. |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (!f()) { |
| // Functions using |WrapWithPoison| may leave |ctx| in an indeterminate |
| // state. Mark the object as poisoned. |
| ctx->poisoned = 1; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int EVP_EncryptUpdate_ex_internal(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| |
| // Ciphers that use blocks may write up to |block_size| extra bytes. Ensure |
| // the output does not overflow |*out_len|. |
| bssl::Span<const uint8_t> in_span(in, in_len); |
| size_t block_size = ctx->cipher->block_size; |
| |
| if (in_span.empty()) { |
| return 1; |
| } |
| |
| size_t buf_len = ctx->buf_len; |
| assert(block_size <= sizeof(ctx->buf)); |
| bssl::Span<uint8_t> out_span(out, max_out_len); |
| if (buf_len != 0) { |
| if (block_size - buf_len > in_span.size()) { |
| CopyToPrefix(in_span, bssl::Span(ctx->buf).subspan(buf_len)); |
| ctx->buf_len += in_span.size(); |
| return 1; |
| } else { |
| size_t j = block_size - buf_len; |
| CopyToPrefix(in_span.first(j), bssl::Span(ctx->buf).subspan(buf_len)); |
| if (out_span.size() < block_size) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| if (!ctx->cipher->cipher_update(ctx, out_span.data(), ctx->buf, |
| block_size)) { |
| return 0; |
| } |
| in_span = in_span.subspan(j); |
| out_span = out_span.subspan(block_size); |
| } |
| } |
| |
| size_t whole_blocks = in_span.size() - block_remainder(ctx, in_span.size()); |
| if (whole_blocks > 0) { |
| if (out_span.size() < whole_blocks) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| if (!ctx->cipher->cipher_update(ctx, out_span.data(), in_span.data(), |
| whole_blocks)) { |
| return 0; |
| } |
| in_span = in_span.subspan(whole_blocks); |
| out_span = out_span.subspan(whole_blocks); |
| } |
| |
| assert(in_span.size() < block_size); |
| CopyToPrefix(in_span, ctx->buf); |
| ctx->buf_len = in_span.size(); |
| |
| *out_len = max_out_len - out_span.size(); |
| return 1; |
| } |
| |
| int EVP_EncryptUpdate_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| return WrapWithPoison(ctx, [&] { |
| return EVP_EncryptUpdate_ex_internal(ctx, out, out_len, max_out_len, in, |
| in_len); |
| }); |
| } |
| |
| int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| size_t out_len_sz; |
| int ret = |
| EVP_EncryptFinal_ex2(ctx, out, &out_len_sz, ctx->cipher->block_size); |
| static_assert(EVP_MAX_BLOCK_LENGTH <= INT_MAX); |
| *out_len = static_cast<int>(out_len_sz); |
| return ret; |
| } |
| |
| static int EVP_EncryptFinal_ex2_internal(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len) { |
| *out_len = 0; |
| |
| size_t block_size = ctx->cipher->block_size; |
| assert(block_size <= sizeof(ctx->buf)); |
| if (block_size == 1) { |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| return ctx->cipher->cipher_final(ctx); |
| } |
| return 1; |
| } |
| |
| size_t buf_len = ctx->buf_len; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (buf_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| return 1; |
| } |
| |
| size_t padding = block_size - buf_len; |
| for (size_t i = buf_len; i < block_size; i++) { |
| ctx->buf[i] = padding; |
| } |
| |
| bssl::Span<uint8_t> out_span(out, max_out_len); |
| if (out_span.size() < block_size) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| if (!ctx->cipher->cipher_update(ctx, out_span.data(), ctx->buf, block_size)) { |
| return 0; |
| } |
| out_span = out_span.subspan(block_size); |
| |
| *out_len = max_out_len - out_span.size(); |
| return 1; |
| } |
| |
| int EVP_EncryptFinal_ex2(EVP_CIPHER_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len) { |
| *out_len = 0; |
| return WrapWithPoison(ctx, [&] { |
| if (!EVP_EncryptFinal_ex2_internal(ctx, out, out_len, max_out_len)) { |
| return 0; |
| } |
| EVP_Cipher_verify_service_indicator(ctx); |
| return 1; |
| }); |
| } |
| |
| int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| *out_len = 0; |
| if (in_len < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); |
| return 0; |
| } |
| size_t in_len_sz = static_cast<size_t>(in_len); |
| size_t out_len_sz; |
| if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && out == nullptr) { |
| if (!EVP_CipherUpdateAAD(ctx, in, in_len_sz)) { |
| return 0; |
| } |
| out_len_sz = in_len_sz; |
| } else { |
| // in_len_sz is < INT_MAX which is no more than half of SIZE_MAX. |
| size_t max_out_len = |
| std::min(in_len_sz + ctx->cipher->block_size - 1, size_t{INT_MAX}); |
| if (!EVP_DecryptUpdate_ex(ctx, out, &out_len_sz, max_out_len, in, |
| in_len_sz)) { |
| return 0; |
| } |
| } |
| *out_len = static_cast<int>(out_len_sz); |
| return 1; |
| } |
| |
| static int EVP_DecryptUpdate_ex_internal(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| |
| // Ciphers that use blocks may write up to |block_size| extra bytes. Ensure |
| // the output does not overflow |*out_len|. |
| bssl::Span<const uint8_t> in_span(in, in_len); |
| size_t block_size = ctx->cipher->block_size; |
| |
| if (in_span.empty()) { |
| return 1; |
| } |
| |
| bssl::Span<uint8_t> out_span(out, max_out_len); |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| // Use the shared block handling logic from encryption. |
| return EVP_EncryptUpdate_ex_internal(ctx, out_span.data(), out_len, |
| out_span.size(), in_span.data(), |
| in_span.size()); |
| } |
| |
| assert(block_size <= sizeof(ctx->final)); |
| if (ctx->final_used) { |
| if (out_span.size() < block_size) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| CopyToPrefix(bssl::Span(ctx->final).first(block_size), out_span); |
| ctx->final_used = 0; |
| out_span = out_span.subspan(block_size); |
| } |
| |
| // Use the shared block handling logic from encryption. |
| if (block_size > 1 && |
| block_remainder(ctx, ctx->buf_len + in_span.size()) == 0) { |
| // Decryption would end on a block boundary. In this case, although we |
| // can decrypt up to the block boundary, we cannot output the final |
| // plaintext block yet. It may be the final block, with padding to |
| // remove. |
| // |
| // Instead, output all but the final block's decryption, then decrypt the |
| // final block into ctx->final, to be processed later. |
| |
| // NOTE: Not _really_ necessary, but let's try aligning the second |
| // EVP_EncryptUpdate_ex call to a block boundary to mess with the buffer |
| // less. |
| size_t head = in_span.size() > block_size ? in_span.size() - block_size : 0; |
| size_t head_out_len; |
| if (!EVP_EncryptUpdate_ex_internal(ctx, out_span.data(), &head_out_len, |
| out_span.size(), in_span.data(), head)) { |
| return 0; |
| } |
| in_span = in_span.subspan(head); |
| out_span = out_span.subspan(head_out_len); |
| size_t final_size; |
| if (!EVP_EncryptUpdate_ex_internal(ctx, ctx->final, &final_size, |
| sizeof(ctx->final), in_span.data(), |
| in_span.size())) { |
| return 0; |
| } |
| ctx->final_used = 1; |
| assert(final_size == block_size); |
| assert(ctx->buf_len == 0); |
| } else { |
| // Buffer will be non-empty. |
| size_t written_out_len; |
| if (!EVP_EncryptUpdate_ex_internal(ctx, out_span.data(), &written_out_len, |
| out_span.size(), in_span.data(), |
| in_span.size())) { |
| return 0; |
| } |
| assert(block_size == 1 || ctx->buf_len != 0); |
| out_span = out_span.subspan(written_out_len); |
| } |
| |
| *out_len = max_out_len - out_span.size(); |
| return 1; |
| } |
| |
| int EVP_DecryptUpdate_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len) { |
| return WrapWithPoison(ctx, [&] { |
| return EVP_DecryptUpdate_ex_internal(ctx, out, out_len, max_out_len, in, |
| in_len); |
| }); |
| } |
| |
| int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| size_t out_len_sz; |
| int ret = |
| EVP_DecryptFinal_ex2(ctx, out, &out_len_sz, ctx->cipher->block_size); |
| static_assert(EVP_MAX_BLOCK_LENGTH <= INT_MAX); |
| *out_len = static_cast<int>(out_len_sz); |
| return ret; |
| } |
| |
| static int EVP_DecryptFinal_ex2_internal(EVP_CIPHER_CTX *ctx, |
| unsigned char *out, size_t *out_len, |
| size_t max_out_len) { |
| *out_len = 0; |
| |
| size_t block_size = ctx->cipher->block_size; |
| assert(block_size <= sizeof(ctx->buf)); |
| if (block_size == 1) { |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| return ctx->cipher->cipher_final(ctx); |
| } |
| return 1; |
| } |
| |
| size_t buf_len = ctx->buf_len; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (buf_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| return 1; |
| } |
| |
| if (buf_len || !ctx->final_used) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH); |
| return 0; |
| } |
| assert(block_size <= sizeof(ctx->final)); |
| |
| // The following assumes that the ciphertext has been authenticated. |
| // Otherwise it provides a padding oracle. |
| size_t padding = ctx->final[block_size - 1]; |
| if (padding == 0 || padding > block_size) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| for (size_t i = block_size - padding; i < block_size; i++) { |
| if (ctx->final[i] != padding) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| } |
| |
| bssl::Span<uint8_t> out_span(out, max_out_len); |
| size_t payload = ctx->cipher->block_size - padding; |
| if (out_span.size() < payload) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| CopyToPrefix(bssl::Span(ctx->final).first(payload), out_span); |
| out_span = out_span.subspan(payload); |
| |
| *out_len = max_out_len - out_span.size(); |
| return 1; |
| } |
| |
| int EVP_DecryptFinal_ex2(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| size_t *out_len, size_t max_out_len) { |
| *out_len = 0; |
| return WrapWithPoison(ctx, [&] { |
| if (!EVP_DecryptFinal_ex2_internal(ctx, out, out_len, max_out_len)) { |
| return 0; |
| } |
| EVP_Cipher_verify_service_indicator(ctx); |
| return 1; |
| }); |
| } |
| |
| int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t in_len) { |
| const int kError = |
| (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) ? -1 : 0; |
| |
| if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && |
| in_len > size_t{INT_MAX}) { |
| // Can't represent the return value? That'd be bad. |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); |
| return kError; |
| } |
| |
| size_t out_len; |
| if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && in == nullptr) { |
| if (!ctx->cipher->cipher_final(ctx)) { |
| return kError; |
| } |
| out_len = 0; |
| } else if ((ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && |
| out == nullptr) { |
| if (!ctx->cipher->update_aad(ctx, in, in_len)) { |
| return kError; |
| } |
| out_len = in_len; // Yes, even though no output was written! |
| } else { |
| if (!ctx->cipher->cipher_update(ctx, out, in, in_len)) { |
| return kError; |
| } |
| out_len = in_len; |
| } |
| |
| // |EVP_CIPH_FLAG_CUSTOM_CIPHER| never sets the FIPS indicator via |
| // |EVP_Cipher| because it's complicated whether the operation has completed |
| // or not. E.g. AES-GCM with a non-NULL |in| argument hasn't completed an |
| // operation. Callers should use the |EVP_AEAD| API or, at least, |
| // |EVP_CipherUpdate| etc. |
| // |
| // This call can't be pushed into |EVP_Cipher_verify_service_indicator| |
| // because whether |ret| indicates success or not depends on whether |
| // |EVP_CIPH_FLAG_CUSTOM_CIPHER| is set. (This unreasonable, but matches |
| // OpenSSL.) |
| if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)) { |
| EVP_Cipher_verify_service_indicator(ctx); |
| } |
| |
| // Custom ciphers return byte count; regular ciphers return boolean. |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| return static_cast<int>(out_len); |
| } |
| return 1; |
| } |
| |
| int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); |
| } else { |
| return EVP_DecryptUpdate(ctx, out, out_len, in, in_len); |
| } |
| } |
| |
| int EVP_CipherUpdate_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptUpdate_ex(ctx, out, out_len, max_out_len, in, in_len); |
| } else { |
| return EVP_DecryptUpdate_ex(ctx, out, out_len, max_out_len, in, in_len); |
| } |
| } |
| |
| int EVP_CipherUpdateAAD(EVP_CIPHER_CTX *ctx, const uint8_t *in, size_t in_len) { |
| return WrapWithPoison(ctx, [&] { |
| if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| return ctx->cipher->update_aad(ctx, in, in_len); |
| }); |
| } |
| |
| int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptFinal_ex(ctx, out, out_len); |
| } else { |
| return EVP_DecryptFinal_ex(ctx, out, out_len); |
| } |
| } |
| |
| int EVP_CipherFinal_ex2(EVP_CIPHER_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptFinal_ex2(ctx, out, out_len, max_out_len); |
| } else { |
| return EVP_DecryptFinal_ex2(ctx, out, out_len, max_out_len); |
| } |
| } |
| |
| const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher; |
| } |
| |
| int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->nid; } |
| |
| int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { |
| return ctx->encrypt; |
| } |
| |
| unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->block_size; |
| } |
| |
| unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { |
| return ctx->key_len; |
| } |
| |
| unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { |
| if (EVP_CIPHER_mode(ctx->cipher) == EVP_CIPH_GCM_MODE) { |
| int length; |
| int res = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0, |
| &length); |
| // EVP_CIPHER_CTX_ctrl returning an error should be impossible under this |
| // circumstance. If it somehow did, fallback to the static cipher iv_len. |
| if (res == 1) { |
| return length; |
| } |
| } |
| return ctx->cipher->iv_len; |
| } |
| |
| void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { |
| return ctx->app_data; |
| } |
| |
| void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { |
| ctx->app_data = data; |
| } |
| |
| uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK; |
| } |
| |
| uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| } |
| |
| int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) { |
| int ret; |
| if (!ctx->cipher) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
| return 0; |
| } |
| |
| if (!ctx->cipher->ctrl) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| ret = ctx->cipher->ctrl(ctx, command, arg, ptr); |
| if (ret == -1) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { |
| if (pad) { |
| ctx->flags &= ~EVP_CIPH_NO_PADDING; |
| } else { |
| ctx->flags |= EVP_CIPH_NO_PADDING; |
| } |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) { |
| if (c->key_len == key_len) { |
| return 1; |
| } |
| |
| if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH); |
| return 0; |
| } |
| |
| c->key_len = key_len; |
| return 1; |
| } |
| |
| int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } |
| |
| unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) { |
| return cipher->block_size; |
| } |
| |
| unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { |
| return cipher->key_len; |
| } |
| |
| unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { |
| return cipher->iv_len; |
| } |
| |
| uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) { |
| return cipher->flags & ~EVP_CIPH_MODE_MASK; |
| } |
| |
| uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) { |
| return cipher->flags & EVP_CIPH_MODE_MASK; |
| } |
| |
| int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv, int enc) { |
| if (cipher) { |
| EVP_CIPHER_CTX_init(ctx); |
| } |
| return EVP_CipherInit_ex(ctx, cipher, nullptr, key, iv, enc); |
| } |
| |
| int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit(ctx, cipher, key, iv, 1); |
| } |
| |
| int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit(ctx, cipher, key, iv, 0); |
| } |
| |
| int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_CipherFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_EncryptFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_DecryptFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_add_cipher_alias(const char *a, const char *b) { return 1; } |
| |
| void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {} |