blob: e33fb48d6a70f6e810e02a2ec7f2a03bbd39595d [file] [log] [blame] [edit]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/bn.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../../internal.h"
#include "internal.h"
static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
const BN_ULONG *b, size_t nb) {
if (na < nb) {
size_t itmp = na;
na = nb;
nb = itmp;
const BN_ULONG *ltmp = a;
a = b;
b = ltmp;
}
BN_ULONG *rr = &(r[na]);
if (nb == 0) {
OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
return;
}
rr[0] = bn_mul_words(r, a, na, b[0]);
for (;;) {
if (--nb == 0) {
return;
}
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
if (--nb == 0) {
return;
}
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
if (--nb == 0) {
return;
}
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
if (--nb == 0) {
return;
}
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
rr += 4;
r += 4;
b += 4;
}
}
// bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
// one if the operation underflowed and zero otherwise. |cl| is the common
// length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
// that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
// cl + abs(dl).
//
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
// is confusing.
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, int cl, int dl) {
assert(cl >= 0);
BN_ULONG borrow = bn_sub_words(r, a, b, cl);
if (dl == 0) {
return borrow;
}
r += cl;
a += cl;
b += cl;
if (dl < 0) {
// |a| is shorter than |b|. Complete the subtraction as if the excess words
// in |a| were zeros.
dl = -dl;
for (int i = 0; i < dl; i++) {
r[i] = CRYPTO_subc_w(0, b[i], borrow, &borrow);
}
} else {
// |b| is shorter than |a|. Complete the subtraction as if the excess words
// in |b| were zeros.
for (int i = 0; i < dl; i++) {
r[i] = CRYPTO_subc_w(a[i], 0, borrow, &borrow);
}
}
return borrow;
}
// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
// and returning a mask of all ones if the result was negative and all zeros if
// the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
// convention.
//
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
// is confusing.
//
// TODO(davidben): This function used to be used as part of a general Karatsuba
// multiplication implementation, which had to account for differently-sized
// inputs. Now it is only used as part of RSA key generation, which does not
// need all this.
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, int cl, int dl,
BN_ULONG *tmp) {
BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
bn_sub_part_words(r, b, a, cl, -dl);
int r_len = cl + (dl < 0 ? -dl : dl);
borrow = 0 - borrow;
bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
return borrow;
}
int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int cl = a->width < b->width ? a->width : b->width;
int dl = a->width - b->width;
int r_len = a->width < b->width ? b->width : a->width;
bssl::BN_CTXScope scope(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == nullptr || !bn_wexpand(r, r_len) || !bn_wexpand(tmp, r_len)) {
return 0;
}
bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
r->width = r_len;
return 1;
}
// bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
// breaks |BIGNUM| invariants and may return a negative zero. This is handled by
// the callers.
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int al = a->width;
int bl = b->width;
if (al == 0 || bl == 0) {
BN_zero(r);
return 1;
}
int i, top;
BIGNUM *rr;
bssl::BN_CTXScope scope(ctx);
if (r == a || r == b) {
rr = BN_CTX_get(ctx);
if (rr == NULL) {
return 0;
}
} else {
rr = r;
}
rr->neg = a->neg ^ b->neg;
i = al - bl;
if (i == 0) {
if (al == 8) {
if (!bn_wexpand(rr, 16)) {
return 0;
}
rr->width = 16;
bn_mul_comba8(rr->d, a->d, b->d);
goto end;
}
}
top = al + bl;
if (!bn_wexpand(rr, top)) {
return 0;
}
rr->width = top;
bn_mul_normal(rr->d, a->d, al, b->d, bl);
end:
if (r != rr && !BN_copy(r, rr)) {
return 0;
}
return 1;
}
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
if (!bn_mul_impl(r, a, b, ctx)) {
return 0;
}
// This additionally fixes any negative zeros created by |bn_mul_impl|.
bn_set_minimal_width(r);
return 1;
}
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
// Prevent negative zeros.
if (a->neg || b->neg) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
return bn_mul_impl(r, a, b, ctx);
}
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
const BN_ULONG *b, size_t num_b) {
if (num_r != num_a + num_b) {
abort();
}
// TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
// hit that code.
if (num_a == 8 && num_b == 8) {
bn_mul_comba8(r, a, b);
} else {
bn_mul_normal(r, a, num_a, b, num_b);
}
}
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n) {
if (n == 0) {
return;
}
size_t max = n * 2;
const BN_ULONG *ap = a;
BN_ULONG *rp = r;
rp[0] = rp[max - 1] = 0;
rp++;
// Compute the contribution of a[i] * a[j] for all i < j.
if (n > 1) {
ap++;
rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
rp += 2;
}
if (n > 2) {
for (size_t i = n - 2; i > 0; i--) {
ap++;
rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
rp += 2;
}
}
// The final result fits in |max| words, so none of the following operations
// will overflow.
// Double |r|, giving the contribution of a[i] * a[j] for all i != j.
bn_add_words(r, r, r, max);
// Add in the contribution of a[i] * a[i] for all i.
bn_sqr_add_words(r, a, n);
}
int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
if (!bn->width) {
return 1;
}
if (w == 0) {
BN_zero(bn);
return 1;
}
BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
if (ll) {
if (!bn_wexpand(bn, bn->width + 1)) {
return 0;
}
bn->d[bn->width++] = ll;
}
return 1;
}
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
int al = a->width;
if (al <= 0) {
r->width = 0;
r->neg = 0;
return 1;
}
bssl::BN_CTXScope scope(ctx);
BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
if (!rr) {
return 0;
}
int max = 2 * al; // Non-zero (from above)
if (!bn_wexpand(rr, max)) {
return 0;
}
if (al == 4) {
bn_sqr_comba4(rr->d, a->d);
} else if (al == 8) {
bn_sqr_comba8(rr->d, a->d);
} else {
bn_sqr_normal(rr->d, a->d, al);
}
rr->neg = 0;
rr->width = max;
if (rr != r && !BN_copy(r, rr)) {
return 0;
}
return 1;
}
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
if (!bn_sqr_consttime(r, a, ctx)) {
return 0;
}
bn_set_minimal_width(r);
return 1;
}
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
assert(r != a);
if (num_r != 2 * num_a) {
abort();
}
if (num_a == 4) {
bn_sqr_comba4(r, a);
} else if (num_a == 8) {
bn_sqr_comba8(r, a);
} else {
bn_sqr_normal(r, a, num_a);
}
}