| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, | 
 |                        const BIGNUM *n, BN_CTX *ctx) { | 
 |   *out_no_inverse = 0; | 
 |  | 
 |   if (!BN_is_odd(n)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int sign; | 
 |   bssl::BN_CTXScope scope(ctx); | 
 |   BIGNUM *A = BN_CTX_get(ctx); | 
 |   BIGNUM *B = BN_CTX_get(ctx); | 
 |   BIGNUM *X = BN_CTX_get(ctx); | 
 |   BIGNUM *Y = BN_CTX_get(ctx); | 
 |   BIGNUM *R = out; | 
 |   if (Y == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BN_zero(Y); | 
 |   if (!BN_one(X) || BN_copy(B, a) == nullptr || BN_copy(A, n) == nullptr) { | 
 |     return 0; | 
 |   } | 
 |   A->neg = 0; | 
 |   sign = -1; | 
 |   // From  B = a mod |n|,  A = |n|  it follows that | 
 |   // | 
 |   //      0 <= B < A, | 
 |   //     -sign*X*a  ==  B   (mod |n|), | 
 |   //      sign*Y*a  ==  A   (mod |n|). | 
 |  | 
 |   // Binary inversion algorithm; requires odd modulus. This is faster than the | 
 |   // general algorithm if the modulus is sufficiently small (about 400 .. 500 | 
 |   // bits on 32-bit systems, but much more on 64-bit systems) | 
 |   int shift; | 
 |  | 
 |   while (!BN_is_zero(B)) { | 
 |     //      0 < B < |n|, | 
 |     //      0 < A <= |n|, | 
 |     // (1) -sign*X*a  ==  B   (mod |n|), | 
 |     // (2)  sign*Y*a  ==  A   (mod |n|) | 
 |  | 
 |     // Now divide  B  by the maximum possible power of two in the integers, | 
 |     // and divide  X  by the same value mod |n|. | 
 |     // When we're done, (1) still holds. | 
 |     shift = 0; | 
 |     while (!BN_is_bit_set(B, shift)) { | 
 |       // note that 0 < B | 
 |       shift++; | 
 |  | 
 |       if (BN_is_odd(X)) { | 
 |         if (!BN_uadd(X, X, n)) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       // now X is even, so we can easily divide it by two | 
 |       if (!BN_rshift1(X, X)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     if (shift > 0) { | 
 |       if (!BN_rshift(B, B, shift)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |  | 
 |     // Same for A and Y. Afterwards, (2) still holds. | 
 |     shift = 0; | 
 |     while (!BN_is_bit_set(A, shift)) { | 
 |       // note that 0 < A | 
 |       shift++; | 
 |  | 
 |       if (BN_is_odd(Y)) { | 
 |         if (!BN_uadd(Y, Y, n)) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       // now Y is even | 
 |       if (!BN_rshift1(Y, Y)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     if (shift > 0) { | 
 |       if (!BN_rshift(A, A, shift)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |  | 
 |     // We still have (1) and (2). | 
 |     // Both  A  and  B  are odd. | 
 |     // The following computations ensure that | 
 |     // | 
 |     //     0 <= B < |n|, | 
 |     //      0 < A < |n|, | 
 |     // (1) -sign*X*a  ==  B   (mod |n|), | 
 |     // (2)  sign*Y*a  ==  A   (mod |n|), | 
 |     // | 
 |     // and that either  A  or  B  is even in the next iteration. | 
 |     if (BN_ucmp(B, A) >= 0) { | 
 |       // -sign*(X + Y)*a == B - A  (mod |n|) | 
 |       if (!BN_uadd(X, X, Y)) { | 
 |         return 0; | 
 |       } | 
 |       // NB: we could use BN_mod_add_quick(X, X, Y, n), but that | 
 |       // actually makes the algorithm slower | 
 |       if (!BN_usub(B, B, A)) { | 
 |         return 0; | 
 |       } | 
 |     } else { | 
 |       //  sign*(X + Y)*a == A - B  (mod |n|) | 
 |       if (!BN_uadd(Y, Y, X)) { | 
 |         return 0; | 
 |       } | 
 |       // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down | 
 |       if (!BN_usub(A, A, B)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!BN_is_one(A)) { | 
 |     *out_no_inverse = 1; | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The while loop (Euclid's algorithm) ends when | 
 |   //      A == gcd(a,n); | 
 |   // we have | 
 |   //       sign*Y*a  ==  A  (mod |n|), | 
 |   // where  Y  is non-negative. | 
 |  | 
 |   if (sign < 0) { | 
 |     if (!BN_sub(Y, n, Y)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   // Now  Y*a  ==  A  (mod |n|). | 
 |  | 
 |   // Y*a == 1  (mod |n|) | 
 |   if (Y->neg || BN_ucmp(Y, n) >= 0) { | 
 |     if (!BN_nnmod(Y, Y, n, ctx)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   if (!BN_copy(R, Y)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, | 
 |                        BN_CTX *ctx) { | 
 |   bssl::UniquePtr<BIGNUM> new_out; | 
 |   if (out == nullptr) { | 
 |     new_out.reset(BN_new()); | 
 |     if (new_out == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     out = new_out.get(); | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<BIGNUM> a_reduced; | 
 |   if (a->neg || BN_ucmp(a, n) >= 0) { | 
 |     a_reduced.reset(BN_dup(a)); | 
 |     if (a_reduced == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     if (!BN_nnmod(a_reduced.get(), a_reduced.get(), n, ctx)) { | 
 |       return nullptr; | 
 |     } | 
 |     a = a_reduced.get(); | 
 |   } | 
 |  | 
 |   int no_inverse; | 
 |   if (!BN_is_odd(n)) { | 
 |     if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) { | 
 |       return nullptr; | 
 |     } | 
 |   } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   new_out.release();  // Passed to the caller via |out|. | 
 |   return out; | 
 | } | 
 |  | 
 | int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, | 
 |                            const BN_MONT_CTX *mont, BN_CTX *ctx) { | 
 |   *out_no_inverse = 0; | 
 |  | 
 |   // |a| is secret, but it is required to be in range, so these comparisons may | 
 |   // be leaked. | 
 |   if (BN_is_negative(a) || | 
 |       constant_time_declassify_int(BN_cmp(a, &mont->N) >= 0)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<BIGNUM> blinding_factor(BN_new()); | 
 |   if (blinding_factor == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // |BN_mod_inverse_odd| is leaky, so generate a secret blinding factor and | 
 |   // blind |a|. This works because (ar)^-1 * r = a^-1, supposing r is | 
 |   // invertible. If r is not invertible, this function will fail. However, we | 
 |   // only use this in RSA, where stumbling on an uninvertible element means | 
 |   // stumbling on the key's factorization. That is, if this function fails, the | 
 |   // RSA key was not actually a product of two large primes. | 
 |   // | 
 |   // TODO(crbug.com/boringssl/677): When the PRNG output is marked secret by | 
 |   // default, the explicit |bn_secret| call can be removed. | 
 |   if (!BN_rand_range_ex(blinding_factor.get(), 1, &mont->N)) { | 
 |     return 0; | 
 |   } | 
 |   bn_secret(blinding_factor.get()); | 
 |   if (!BN_mod_mul_montgomery(out, blinding_factor.get(), a, mont, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Once blinded, |out| is no longer secret, so it may be passed to a leaky | 
 |   // mod inverse function. Note |blinding_factor| is secret, so |out| will be | 
 |   // secret again after multiplying. | 
 |   bn_declassify(out); | 
 |   if (!BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || | 
 |       !BN_mod_mul_montgomery(out, blinding_factor.get(), out, mont, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
 |                          BN_CTX *ctx, const BN_MONT_CTX *mont_p) { | 
 |   bssl::BN_CTXScope scope(ctx); | 
 |   BIGNUM *p_minus_2 = BN_CTX_get(ctx); | 
 |   return p_minus_2 != nullptr && BN_copy(p_minus_2, p) && | 
 |          BN_sub_word(p_minus_2, 2) && | 
 |          BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); | 
 | } | 
 |  | 
 | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
 |                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p) { | 
 |   bssl::BN_CTXScope scope(ctx); | 
 |   BIGNUM *p_minus_2 = BN_CTX_get(ctx); | 
 |   return p_minus_2 != nullptr && BN_copy(p_minus_2, p) && | 
 |          BN_sub_word(p_minus_2, 2) && | 
 |          BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); | 
 | } |