| // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // The ACTION* family of macros can be used in a namespace scope to | 
 | // define custom actions easily.  The syntax: | 
 | // | 
 | //   ACTION(name) { statements; } | 
 | // | 
 | // will define an action with the given name that executes the | 
 | // statements.  The value returned by the statements will be used as | 
 | // the return value of the action.  Inside the statements, you can | 
 | // refer to the K-th (0-based) argument of the mock function by | 
 | // 'argK', and refer to its type by 'argK_type'.  For example: | 
 | // | 
 | //   ACTION(IncrementArg1) { | 
 | //     arg1_type temp = arg1; | 
 | //     return ++(*temp); | 
 | //   } | 
 | // | 
 | // allows you to write | 
 | // | 
 | //   ...WillOnce(IncrementArg1()); | 
 | // | 
 | // You can also refer to the entire argument tuple and its type by | 
 | // 'args' and 'args_type', and refer to the mock function type and its | 
 | // return type by 'function_type' and 'return_type'. | 
 | // | 
 | // Note that you don't need to specify the types of the mock function | 
 | // arguments.  However rest assured that your code is still type-safe: | 
 | // you'll get a compiler error if *arg1 doesn't support the ++ | 
 | // operator, or if the type of ++(*arg1) isn't compatible with the | 
 | // mock function's return type, for example. | 
 | // | 
 | // Sometimes you'll want to parameterize the action.   For that you can use | 
 | // another macro: | 
 | // | 
 | //   ACTION_P(name, param_name) { statements; } | 
 | // | 
 | // For example: | 
 | // | 
 | //   ACTION_P(Add, n) { return arg0 + n; } | 
 | // | 
 | // will allow you to write: | 
 | // | 
 | //   ...WillOnce(Add(5)); | 
 | // | 
 | // Note that you don't need to provide the type of the parameter | 
 | // either.  If you need to reference the type of a parameter named | 
 | // 'foo', you can write 'foo_type'.  For example, in the body of | 
 | // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type | 
 | // of 'n'. | 
 | // | 
 | // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support | 
 | // multi-parameter actions. | 
 | // | 
 | // For the purpose of typing, you can view | 
 | // | 
 | //   ACTION_Pk(Foo, p1, ..., pk) { ... } | 
 | // | 
 | // as shorthand for | 
 | // | 
 | //   template <typename p1_type, ..., typename pk_type> | 
 | //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } | 
 | // | 
 | // In particular, you can provide the template type arguments | 
 | // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); | 
 | // although usually you can rely on the compiler to infer the types | 
 | // for you automatically.  You can assign the result of expression | 
 | // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., | 
 | // pk_type>.  This can be useful when composing actions. | 
 | // | 
 | // You can also overload actions with different numbers of parameters: | 
 | // | 
 | //   ACTION_P(Plus, a) { ... } | 
 | //   ACTION_P2(Plus, a, b) { ... } | 
 | // | 
 | // While it's tempting to always use the ACTION* macros when defining | 
 | // a new action, you should also consider implementing ActionInterface | 
 | // or using MakePolymorphicAction() instead, especially if you need to | 
 | // use the action a lot.  While these approaches require more work, | 
 | // they give you more control on the types of the mock function | 
 | // arguments and the action parameters, which in general leads to | 
 | // better compiler error messages that pay off in the long run.  They | 
 | // also allow overloading actions based on parameter types (as opposed | 
 | // to just based on the number of parameters). | 
 | // | 
 | // CAVEAT: | 
 | // | 
 | // ACTION*() can only be used in a namespace scope as templates cannot be | 
 | // declared inside of a local class. | 
 | // Users can, however, define any local functors (e.g. a lambda) that | 
 | // can be used as actions. | 
 | // | 
 | // MORE INFORMATION: | 
 | // | 
 | // To learn more about using these macros, please search for 'ACTION' on | 
 | // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md | 
 |  | 
 | // IWYU pragma: private, include "gmock/gmock.h" | 
 | // IWYU pragma: friend gmock/.* | 
 |  | 
 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 |  | 
 | #ifndef _WIN32_WCE | 
 | #include <errno.h> | 
 | #endif | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | #include "gmock/internal/gmock-internal-utils.h" | 
 | #include "gmock/internal/gmock-port.h" | 
 | #include "gmock/internal/gmock-pp.h" | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement an action Foo, define: | 
 | //   1. a class FooAction that implements the ActionInterface interface, and | 
 | //   2. a factory function that creates an Action object from a | 
 | //      const FooAction*. | 
 | // | 
 | // The two-level delegation design follows that of Matcher, providing | 
 | // consistency for extension developers.  It also eases ownership | 
 | // management as Action objects can now be copied like plain values. | 
 |  | 
 | namespace internal { | 
 |  | 
 | // BuiltInDefaultValueGetter<T, true>::Get() returns a | 
 | // default-constructed T value.  BuiltInDefaultValueGetter<T, | 
 | // false>::Get() crashes with an error. | 
 | // | 
 | // This primary template is used when kDefaultConstructible is true. | 
 | template <typename T, bool kDefaultConstructible> | 
 | struct BuiltInDefaultValueGetter { | 
 |   static T Get() { return T(); } | 
 | }; | 
 | template <typename T> | 
 | struct BuiltInDefaultValueGetter<T, false> { | 
 |   static T Get() { | 
 |     Assert(false, __FILE__, __LINE__, | 
 |            "Default action undefined for the function return type."); | 
 | #if defined(__GNUC__) || defined(__clang__) | 
 |     __builtin_unreachable(); | 
 | #elif defined(_MSC_VER) | 
 |     __assume(0); | 
 | #else | 
 |     return Invalid<T>(); | 
 |     // The above statement will never be reached, but is required in | 
 |     // order for this function to compile. | 
 | #endif | 
 |   } | 
 | }; | 
 |  | 
 | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value | 
 | // for type T, which is NULL when T is a raw pointer type, 0 when T is | 
 | // a numeric type, false when T is bool, or "" when T is string or | 
 | // std::string.  In addition, in C++11 and above, it turns a | 
 | // default-constructed T value if T is default constructible.  For any | 
 | // other type T, the built-in default T value is undefined, and the | 
 | // function will abort the process. | 
 | template <typename T> | 
 | class BuiltInDefaultValue { | 
 |  public: | 
 |   // This function returns true if and only if type T has a built-in default | 
 |   // value. | 
 |   static bool Exists() { return ::std::is_default_constructible<T>::value; } | 
 |  | 
 |   static T Get() { | 
 |     return BuiltInDefaultValueGetter< | 
 |         T, ::std::is_default_constructible<T>::value>::Get(); | 
 |   } | 
 | }; | 
 |  | 
 | // This partial specialization says that we use the same built-in | 
 | // default value for T and const T. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<const T> { | 
 |  public: | 
 |   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } | 
 |   static T Get() { return BuiltInDefaultValue<T>::Get(); } | 
 | }; | 
 |  | 
 | // This partial specialization defines the default values for pointer | 
 | // types. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<T*> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static T* Get() { return nullptr; } | 
 | }; | 
 |  | 
 | // The following specializations define the default values for | 
 | // specific types we care about. | 
 | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | 
 |   template <>                                                     \ | 
 |   class BuiltInDefaultValue<type> {                               \ | 
 |    public:                                                        \ | 
 |     static bool Exists() { return true; }                         \ | 
 |     static type Get() { return value; }                           \ | 
 |   } | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | 
 |  | 
 | // There's no need for a default action for signed wchar_t, as that | 
 | // type is the same as wchar_t for gcc, and invalid for MSVC. | 
 | // | 
 | // There's also no need for a default action for unsigned wchar_t, as | 
 | // that type is the same as unsigned int for gcc, and invalid for | 
 | // MSVC. | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT | 
 | #endif | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | 
 |  | 
 | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | 
 |  | 
 | // Partial implementations of metaprogramming types from the standard library | 
 | // not available in C++11. | 
 |  | 
 | template <typename P> | 
 | struct negation | 
 |     // NOLINTNEXTLINE | 
 |     : std::integral_constant<bool, bool(!P::value)> {}; | 
 |  | 
 | // Base case: with zero predicates the answer is always true. | 
 | template <typename...> | 
 | struct conjunction : std::true_type {}; | 
 |  | 
 | // With a single predicate, the answer is that predicate. | 
 | template <typename P1> | 
 | struct conjunction<P1> : P1 {}; | 
 |  | 
 | // With multiple predicates the answer is the first predicate if that is false, | 
 | // and we recurse otherwise. | 
 | template <typename P1, typename... Ps> | 
 | struct conjunction<P1, Ps...> | 
 |     : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; | 
 |  | 
 | template <typename...> | 
 | struct disjunction : std::false_type {}; | 
 |  | 
 | template <typename P1> | 
 | struct disjunction<P1> : P1 {}; | 
 |  | 
 | template <typename P1, typename... Ps> | 
 | struct disjunction<P1, Ps...> | 
 |     // NOLINTNEXTLINE | 
 |     : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; | 
 |  | 
 | template <typename...> | 
 | using void_t = void; | 
 |  | 
 | // Detects whether an expression of type `From` can be implicitly converted to | 
 | // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: | 
 | // | 
 | //     An expression e can be implicitly converted to a type T if and only if | 
 | //     the declaration T t=e; is well-formed, for some invented temporary | 
 | //     variable t ([dcl.init]). | 
 | // | 
 | // [conv]/2 implies we can use function argument passing to detect whether this | 
 | // initialization is valid. | 
 | // | 
 | // Note that this is distinct from is_convertible, which requires this be valid: | 
 | // | 
 | //     To test() { | 
 | //       return declval<From>(); | 
 | //     } | 
 | // | 
 | // In particular, is_convertible doesn't give the correct answer when `To` and | 
 | // `From` are the same non-moveable type since `declval<From>` will be an rvalue | 
 | // reference, defeating the guaranteed copy elision that would otherwise make | 
 | // this function work. | 
 | // | 
 | // REQUIRES: `From` is not cv void. | 
 | template <typename From, typename To> | 
 | struct is_implicitly_convertible { | 
 |  private: | 
 |   // A function that accepts a parameter of type T. This can be called with type | 
 |   // U successfully only if U is implicitly convertible to T. | 
 |   template <typename T> | 
 |   static void Accept(T); | 
 |  | 
 |   // A function that creates a value of type T. | 
 |   template <typename T> | 
 |   static T Make(); | 
 |  | 
 |   // An overload be selected when implicit conversion from T to To is possible. | 
 |   template <typename T, typename = decltype(Accept<To>(Make<T>()))> | 
 |   static std::true_type TestImplicitConversion(int); | 
 |  | 
 |   // A fallback overload selected in all other cases. | 
 |   template <typename T> | 
 |   static std::false_type TestImplicitConversion(...); | 
 |  | 
 |  public: | 
 |   using type = decltype(TestImplicitConversion<From>(0)); | 
 |   static constexpr bool value = type::value; | 
 | }; | 
 |  | 
 | // Like std::invoke_result_t from C++17, but works only for objects with call | 
 | // operators (not e.g. member function pointers, which we don't need specific | 
 | // support for in OnceAction because std::function deals with them). | 
 | template <typename F, typename... Args> | 
 | using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); | 
 |  | 
 | template <typename Void, typename R, typename F, typename... Args> | 
 | struct is_callable_r_impl : std::false_type {}; | 
 |  | 
 | // Specialize the struct for those template arguments where call_result_t is | 
 | // well-formed. When it's not, the generic template above is chosen, resulting | 
 | // in std::false_type. | 
 | template <typename R, typename F, typename... Args> | 
 | struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> | 
 |     : std::conditional< | 
 |           std::is_void<R>::value,  // | 
 |           std::true_type,          // | 
 |           is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; | 
 |  | 
 | // Like std::is_invocable_r from C++17, but works only for objects with call | 
 | // operators. See the note on call_result_t. | 
 | template <typename R, typename F, typename... Args> | 
 | using is_callable_r = is_callable_r_impl<void, R, F, Args...>; | 
 |  | 
 | // Like std::as_const from C++17. | 
 | template <typename T> | 
 | typename std::add_const<T>::type& as_const(T& t) { | 
 |   return t; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // Specialized for function types below. | 
 | template <typename F> | 
 | class OnceAction; | 
 |  | 
 | // An action that can only be used once. | 
 | // | 
 | // This is accepted by WillOnce, which doesn't require the underlying action to | 
 | // be copy-constructible (only move-constructible), and promises to invoke it as | 
 | // an rvalue reference. This allows the action to work with move-only types like | 
 | // std::move_only_function in a type-safe manner. | 
 | // | 
 | // For example: | 
 | // | 
 | //     // Assume we have some API that needs to accept a unique pointer to some | 
 | //     // non-copyable object Foo. | 
 | //     void AcceptUniquePointer(std::unique_ptr<Foo> foo); | 
 | // | 
 | //     // We can define an action that provides a Foo to that API. Because It | 
 | //     // has to give away its unique pointer, it must not be called more than | 
 | //     // once, so its call operator is &&-qualified. | 
 | //     struct ProvideFoo { | 
 | //       std::unique_ptr<Foo> foo; | 
 | // | 
 | //       void operator()() && { | 
 | //         AcceptUniquePointer(std::move(Foo)); | 
 | //       } | 
 | //     }; | 
 | // | 
 | //     // This action can be used with WillOnce. | 
 | //     EXPECT_CALL(mock, Call) | 
 | //         .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); | 
 | // | 
 | //     // But a call to WillRepeatedly will fail to compile. This is correct, | 
 | //     // since the action cannot correctly be used repeatedly. | 
 | //     EXPECT_CALL(mock, Call) | 
 | //         .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); | 
 | // | 
 | // A less-contrived example would be an action that returns an arbitrary type, | 
 | // whose &&-qualified call operator is capable of dealing with move-only types. | 
 | template <typename Result, typename... Args> | 
 | class OnceAction<Result(Args...)> final { | 
 |  private: | 
 |   // True iff we can use the given callable type (or lvalue reference) directly | 
 |   // via StdFunctionAdaptor. | 
 |   template <typename Callable> | 
 |   using IsDirectlyCompatible = internal::conjunction< | 
 |       // It must be possible to capture the callable in StdFunctionAdaptor. | 
 |       std::is_constructible<typename std::decay<Callable>::type, Callable>, | 
 |       // The callable must be compatible with our signature. | 
 |       internal::is_callable_r<Result, typename std::decay<Callable>::type, | 
 |                               Args...>>; | 
 |  | 
 |   // True iff we can use the given callable type via StdFunctionAdaptor once we | 
 |   // ignore incoming arguments. | 
 |   template <typename Callable> | 
 |   using IsCompatibleAfterIgnoringArguments = internal::conjunction< | 
 |       // It must be possible to capture the callable in a lambda. | 
 |       std::is_constructible<typename std::decay<Callable>::type, Callable>, | 
 |       // The callable must be invocable with zero arguments, returning something | 
 |       // convertible to Result. | 
 |       internal::is_callable_r<Result, typename std::decay<Callable>::type>>; | 
 |  | 
 |  public: | 
 |   // Construct from a callable that is directly compatible with our mocked | 
 |   // signature: it accepts our function type's arguments and returns something | 
 |   // convertible to our result type. | 
 |   template <typename Callable, | 
 |             typename std::enable_if< | 
 |                 internal::conjunction< | 
 |                     // Teach clang on macOS that we're not talking about a | 
 |                     // copy/move constructor here. Otherwise it gets confused | 
 |                     // when checking the is_constructible requirement of our | 
 |                     // traits above. | 
 |                     internal::negation<std::is_same< | 
 |                         OnceAction, typename std::decay<Callable>::type>>, | 
 |                     IsDirectlyCompatible<Callable>>  // | 
 |                 ::value, | 
 |                 int>::type = 0> | 
 |   OnceAction(Callable&& callable)  // NOLINT | 
 |       : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( | 
 |             {}, std::forward<Callable>(callable))) {} | 
 |  | 
 |   // As above, but for a callable that ignores the mocked function's arguments. | 
 |   template <typename Callable, | 
 |             typename std::enable_if< | 
 |                 internal::conjunction< | 
 |                     // Teach clang on macOS that we're not talking about a | 
 |                     // copy/move constructor here. Otherwise it gets confused | 
 |                     // when checking the is_constructible requirement of our | 
 |                     // traits above. | 
 |                     internal::negation<std::is_same< | 
 |                         OnceAction, typename std::decay<Callable>::type>>, | 
 |                     // Exclude callables for which the overload above works. | 
 |                     // We'd rather provide the arguments if possible. | 
 |                     internal::negation<IsDirectlyCompatible<Callable>>, | 
 |                     IsCompatibleAfterIgnoringArguments<Callable>>::value, | 
 |                 int>::type = 0> | 
 |   OnceAction(Callable&& callable)  // NOLINT | 
 |                                    // Call the constructor above with a callable | 
 |                                    // that ignores the input arguments. | 
 |       : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ | 
 |             std::forward<Callable>(callable)}) {} | 
 |  | 
 |   // We are naturally copyable because we store only an std::function, but | 
 |   // semantically we should not be copyable. | 
 |   OnceAction(const OnceAction&) = delete; | 
 |   OnceAction& operator=(const OnceAction&) = delete; | 
 |   OnceAction(OnceAction&&) = default; | 
 |  | 
 |   // Invoke the underlying action callable with which we were constructed, | 
 |   // handing it the supplied arguments. | 
 |   Result Call(Args... args) && { | 
 |     return function_(std::forward<Args>(args)...); | 
 |   } | 
 |  | 
 |  private: | 
 |   // An adaptor that wraps a callable that is compatible with our signature and | 
 |   // being invoked as an rvalue reference so that it can be used as an | 
 |   // StdFunctionAdaptor. This throws away type safety, but that's fine because | 
 |   // this is only used by WillOnce, which we know calls at most once. | 
 |   // | 
 |   // Once we have something like std::move_only_function from C++23, we can do | 
 |   // away with this. | 
 |   template <typename Callable> | 
 |   class StdFunctionAdaptor final { | 
 |    public: | 
 |     // A tag indicating that the (otherwise universal) constructor is accepting | 
 |     // the callable itself, instead of e.g. stealing calls for the move | 
 |     // constructor. | 
 |     struct CallableTag final {}; | 
 |  | 
 |     template <typename F> | 
 |     explicit StdFunctionAdaptor(CallableTag, F&& callable) | 
 |         : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} | 
 |  | 
 |     // Rather than explicitly returning Result, we return whatever the wrapped | 
 |     // callable returns. This allows for compatibility with existing uses like | 
 |     // the following, when the mocked function returns void: | 
 |     // | 
 |     //     EXPECT_CALL(mock_fn_, Call) | 
 |     //         .WillOnce([&] { | 
 |     //            [...] | 
 |     //            return 0; | 
 |     //         }); | 
 |     // | 
 |     // Such a callable can be turned into std::function<void()>. If we use an | 
 |     // explicit return type of Result here then it *doesn't* work with | 
 |     // std::function, because we'll get a "void function should not return a | 
 |     // value" error. | 
 |     // | 
 |     // We need not worry about incompatible result types because the SFINAE on | 
 |     // OnceAction already checks this for us. std::is_invocable_r_v itself makes | 
 |     // the same allowance for void result types. | 
 |     template <typename... ArgRefs> | 
 |     internal::call_result_t<Callable, ArgRefs...> operator()( | 
 |         ArgRefs&&... args) const { | 
 |       return std::move(*callable_)(std::forward<ArgRefs>(args)...); | 
 |     } | 
 |  | 
 |    private: | 
 |     // We must put the callable on the heap so that we are copyable, which | 
 |     // std::function needs. | 
 |     std::shared_ptr<Callable> callable_; | 
 |   }; | 
 |  | 
 |   // An adaptor that makes a callable that accepts zero arguments callable with | 
 |   // our mocked arguments. | 
 |   template <typename Callable> | 
 |   struct IgnoreIncomingArguments { | 
 |     internal::call_result_t<Callable> operator()(Args&&...) { | 
 |       return std::move(callable)(); | 
 |     } | 
 |  | 
 |     Callable callable; | 
 |   }; | 
 |  | 
 |   std::function<Result(Args...)> function_; | 
 | }; | 
 |  | 
 | // When an unexpected function call is encountered, Google Mock will | 
 | // let it return a default value if the user has specified one for its | 
 | // return type, or if the return type has a built-in default value; | 
 | // otherwise Google Mock won't know what value to return and will have | 
 | // to abort the process. | 
 | // | 
 | // The DefaultValue<T> class allows a user to specify the | 
 | // default value for a type T that is both copyable and publicly | 
 | // destructible (i.e. anything that can be used as a function return | 
 | // type).  The usage is: | 
 | // | 
 | //   // Sets the default value for type T to be foo. | 
 | //   DefaultValue<T>::Set(foo); | 
 | template <typename T> | 
 | class DefaultValue { | 
 |  public: | 
 |   // Sets the default value for type T; requires T to be | 
 |   // copy-constructable and have a public destructor. | 
 |   static void Set(T x) { | 
 |     delete producer_; | 
 |     producer_ = new FixedValueProducer(x); | 
 |   } | 
 |  | 
 |   // Provides a factory function to be called to generate the default value. | 
 |   // This method can be used even if T is only move-constructible, but it is not | 
 |   // limited to that case. | 
 |   typedef T (*FactoryFunction)(); | 
 |   static void SetFactory(FactoryFunction factory) { | 
 |     delete producer_; | 
 |     producer_ = new FactoryValueProducer(factory); | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T. | 
 |   static void Clear() { | 
 |     delete producer_; | 
 |     producer_ = nullptr; | 
 |   } | 
 |  | 
 |   // Returns true if and only if the user has set the default value for type T. | 
 |   static bool IsSet() { return producer_ != nullptr; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T if the user has set one; | 
 |   // otherwise returns the built-in default value. Requires that Exists() | 
 |   // is true, which ensures that the return value is well-defined. | 
 |   static T Get() { | 
 |     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() | 
 |                                 : producer_->Produce(); | 
 |   } | 
 |  | 
 |  private: | 
 |   class ValueProducer { | 
 |    public: | 
 |     virtual ~ValueProducer() = default; | 
 |     virtual T Produce() = 0; | 
 |   }; | 
 |  | 
 |   class FixedValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FixedValueProducer(T value) : value_(value) {} | 
 |     T Produce() override { return value_; } | 
 |  | 
 |    private: | 
 |     const T value_; | 
 |     FixedValueProducer(const FixedValueProducer&) = delete; | 
 |     FixedValueProducer& operator=(const FixedValueProducer&) = delete; | 
 |   }; | 
 |  | 
 |   class FactoryValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FactoryValueProducer(FactoryFunction factory) | 
 |         : factory_(factory) {} | 
 |     T Produce() override { return factory_(); } | 
 |  | 
 |    private: | 
 |     const FactoryFunction factory_; | 
 |     FactoryValueProducer(const FactoryValueProducer&) = delete; | 
 |     FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; | 
 |   }; | 
 |  | 
 |   static ValueProducer* producer_; | 
 | }; | 
 |  | 
 | // This partial specialization allows a user to set default values for | 
 | // reference types. | 
 | template <typename T> | 
 | class DefaultValue<T&> { | 
 |  public: | 
 |   // Sets the default value for type T&. | 
 |   static void Set(T& x) {  // NOLINT | 
 |     address_ = &x; | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T&. | 
 |   static void Clear() { address_ = nullptr; } | 
 |  | 
 |   // Returns true if and only if the user has set the default value for type T&. | 
 |   static bool IsSet() { return address_ != nullptr; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T& if the user has set one; | 
 |   // otherwise returns the built-in default value if there is one; | 
 |   // otherwise aborts the process. | 
 |   static T& Get() { | 
 |     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() | 
 |                                : *address_; | 
 |   } | 
 |  | 
 |  private: | 
 |   static T* address_; | 
 | }; | 
 |  | 
 | // This specialization allows DefaultValue<void>::Get() to | 
 | // compile. | 
 | template <> | 
 | class DefaultValue<void> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static void Get() {} | 
 | }; | 
 |  | 
 | // Points to the user-set default value for type T. | 
 | template <typename T> | 
 | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; | 
 |  | 
 | // Points to the user-set default value for type T&. | 
 | template <typename T> | 
 | T* DefaultValue<T&>::address_ = nullptr; | 
 |  | 
 | // Implement this interface to define an action for function type F. | 
 | template <typename F> | 
 | class ActionInterface { | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   ActionInterface() = default; | 
 |   virtual ~ActionInterface() = default; | 
 |  | 
 |   // Performs the action.  This method is not const, as in general an | 
 |   // action can have side effects and be stateful.  For example, a | 
 |   // get-the-next-element-from-the-collection action will need to | 
 |   // remember the current element. | 
 |   virtual Result Perform(const ArgumentTuple& args) = 0; | 
 |  | 
 |  private: | 
 |   ActionInterface(const ActionInterface&) = delete; | 
 |   ActionInterface& operator=(const ActionInterface&) = delete; | 
 | }; | 
 |  | 
 | template <typename F> | 
 | class Action; | 
 |  | 
 | // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) | 
 | // object that represents an action to be taken when a mock function of type | 
 | // R(Args...) is called. The implementation of Action<T> is just a | 
 | // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You | 
 | // can view an object implementing ActionInterface<F> as a concrete action | 
 | // (including its current state), and an Action<F> object as a handle to it. | 
 | template <typename R, typename... Args> | 
 | class Action<R(Args...)> { | 
 |  private: | 
 |   using F = R(Args...); | 
 |  | 
 |   // Adapter class to allow constructing Action from a legacy ActionInterface. | 
 |   // New code should create Actions from functors instead. | 
 |   struct ActionAdapter { | 
 |     // Adapter must be copyable to satisfy std::function requirements. | 
 |     ::std::shared_ptr<ActionInterface<F>> impl_; | 
 |  | 
 |     template <typename... InArgs> | 
 |     typename internal::Function<F>::Result operator()(InArgs&&... args) { | 
 |       return impl_->Perform( | 
 |           ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); | 
 |     } | 
 |   }; | 
 |  | 
 |   template <typename G> | 
 |   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; | 
 |  | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   // Constructs a null Action.  Needed for storing Action objects in | 
 |   // STL containers. | 
 |   Action() = default; | 
 |  | 
 |   // Construct an Action from a specified callable. | 
 |   // This cannot take std::function directly, because then Action would not be | 
 |   // directly constructible from lambda (it would require two conversions). | 
 |   template < | 
 |       typename G, | 
 |       typename = typename std::enable_if<internal::disjunction< | 
 |           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, | 
 |                                                         G>>::value>::type> | 
 |   Action(G&& fun) {  // NOLINT | 
 |     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); | 
 |   } | 
 |  | 
 |   // Constructs an Action from its implementation. | 
 |   explicit Action(ActionInterface<F>* impl) | 
 |       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} | 
 |  | 
 |   // This constructor allows us to turn an Action<Func> object into an | 
 |   // Action<F>, as long as F's arguments can be implicitly converted | 
 |   // to Func's and Func's return type can be implicitly converted to F's. | 
 |   template <typename Func> | 
 |   Action(const Action<Func>& action)  // NOLINT | 
 |       : fun_(action.fun_) {} | 
 |  | 
 |   // Returns true if and only if this is the DoDefault() action. | 
 |   bool IsDoDefault() const { return fun_ == nullptr; } | 
 |  | 
 |   // Performs the action.  Note that this method is const even though | 
 |   // the corresponding method in ActionInterface is not.  The reason | 
 |   // is that a const Action<F> means that it cannot be re-bound to | 
 |   // another concrete action, not that the concrete action it binds to | 
 |   // cannot change state.  (Think of the difference between a const | 
 |   // pointer and a pointer to const.) | 
 |   Result Perform(ArgumentTuple args) const { | 
 |     if (IsDoDefault()) { | 
 |       internal::IllegalDoDefault(__FILE__, __LINE__); | 
 |     } | 
 |     return internal::Apply(fun_, ::std::move(args)); | 
 |   } | 
 |  | 
 |   // An action can be used as a OnceAction, since it's obviously safe to call it | 
 |   // once. | 
 |   operator OnceAction<F>() const {  // NOLINT | 
 |     // Return a OnceAction-compatible callable that calls Perform with the | 
 |     // arguments it is provided. We could instead just return fun_, but then | 
 |     // we'd need to handle the IsDoDefault() case separately. | 
 |     struct OA { | 
 |       Action<F> action; | 
 |  | 
 |       R operator()(Args... args) && { | 
 |         return action.Perform( | 
 |             std::forward_as_tuple(std::forward<Args>(args)...)); | 
 |       } | 
 |     }; | 
 |  | 
 |     return OA{*this}; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename G> | 
 |   friend class Action; | 
 |  | 
 |   template <typename G> | 
 |   void Init(G&& g, ::std::true_type) { | 
 |     fun_ = ::std::forward<G>(g); | 
 |   } | 
 |  | 
 |   template <typename G> | 
 |   void Init(G&& g, ::std::false_type) { | 
 |     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; | 
 |   } | 
 |  | 
 |   template <typename FunctionImpl> | 
 |   struct IgnoreArgs { | 
 |     template <typename... InArgs> | 
 |     Result operator()(const InArgs&...) const { | 
 |       return function_impl(); | 
 |     } | 
 |  | 
 |     FunctionImpl function_impl; | 
 |   }; | 
 |  | 
 |   // fun_ is an empty function if and only if this is the DoDefault() action. | 
 |   ::std::function<F> fun_; | 
 | }; | 
 |  | 
 | // The PolymorphicAction class template makes it easy to implement a | 
 | // polymorphic action (i.e. an action that can be used in mock | 
 | // functions of than one type, e.g. Return()). | 
 | // | 
 | // To define a polymorphic action, a user first provides a COPYABLE | 
 | // implementation class that has a Perform() method template: | 
 | // | 
 | //   class FooAction { | 
 | //    public: | 
 | //     template <typename Result, typename ArgumentTuple> | 
 | //     Result Perform(const ArgumentTuple& args) const { | 
 | //       // Processes the arguments and returns a result, using | 
 | //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple. | 
 | //     } | 
 | //     ... | 
 | //   }; | 
 | // | 
 | // Then the user creates the polymorphic action using | 
 | // MakePolymorphicAction(object) where object has type FooAction.  See | 
 | // the definition of Return(void) and SetArgumentPointee<N>(value) for | 
 | // complete examples. | 
 | template <typename Impl> | 
 | class PolymorphicAction { | 
 |  public: | 
 |   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     return Action<F>(new MonomorphicImpl<F>(impl_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class MonomorphicImpl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |     Result Perform(const ArgumentTuple& args) override { | 
 |       return impl_.template Perform<Result>(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     Impl impl_; | 
 |   }; | 
 |  | 
 |   Impl impl_; | 
 | }; | 
 |  | 
 | // Creates an Action from its implementation and returns it.  The | 
 | // created Action object owns the implementation. | 
 | template <typename F> | 
 | Action<F> MakeAction(ActionInterface<F>* impl) { | 
 |   return Action<F>(impl); | 
 | } | 
 |  | 
 | // Creates a polymorphic action from its implementation.  This is | 
 | // easier to use than the PolymorphicAction<Impl> constructor as it | 
 | // doesn't require you to explicitly write the template argument, e.g. | 
 | // | 
 | //   MakePolymorphicAction(foo); | 
 | // vs | 
 | //   PolymorphicAction<TypeOfFoo>(foo); | 
 | template <typename Impl> | 
 | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { | 
 |   return PolymorphicAction<Impl>(impl); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Helper struct to specialize ReturnAction to execute a move instead of a copy | 
 | // on return. Useful for move-only types, but could be used on any type. | 
 | template <typename T> | 
 | struct ByMoveWrapper { | 
 |   explicit ByMoveWrapper(T value) : payload(std::move(value)) {} | 
 |   T payload; | 
 | }; | 
 |  | 
 | // The general implementation of Return(R). Specializations follow below. | 
 | template <typename R> | 
 | class ReturnAction final { | 
 |  public: | 
 |   explicit ReturnAction(R value) : value_(std::move(value)) {} | 
 |  | 
 |   template <typename U, typename... Args, | 
 |             typename = typename std::enable_if<conjunction< | 
 |                 // See the requirements documented on Return. | 
 |                 negation<std::is_same<void, U>>,  // | 
 |                 negation<std::is_reference<U>>,   // | 
 |                 std::is_convertible<R, U>,        // | 
 |                 std::is_move_constructible<U>>::value>::type> | 
 |   operator OnceAction<U(Args...)>() && {  // NOLINT | 
 |     return Impl<U>(std::move(value_)); | 
 |   } | 
 |  | 
 |   template <typename U, typename... Args, | 
 |             typename = typename std::enable_if<conjunction< | 
 |                 // See the requirements documented on Return. | 
 |                 negation<std::is_same<void, U>>,   // | 
 |                 negation<std::is_reference<U>>,    // | 
 |                 std::is_convertible<const R&, U>,  // | 
 |                 std::is_copy_constructible<U>>::value>::type> | 
 |   operator Action<U(Args...)>() const {  // NOLINT | 
 |     return Impl<U>(value_); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the Return(x) action for a mock function that returns type U. | 
 |   template <typename U> | 
 |   class Impl final { | 
 |    public: | 
 |     // The constructor used when the return value is allowed to move from the | 
 |     // input value (i.e. we are converting to OnceAction). | 
 |     explicit Impl(R&& input_value) | 
 |         : state_(new State(std::move(input_value))) {} | 
 |  | 
 |     // The constructor used when the return value is not allowed to move from | 
 |     // the input value (i.e. we are converting to Action). | 
 |     explicit Impl(const R& input_value) : state_(new State(input_value)) {} | 
 |  | 
 |     U operator()() && { return std::move(state_->value); } | 
 |     U operator()() const& { return state_->value; } | 
 |  | 
 |    private: | 
 |     // We put our state on the heap so that the compiler-generated copy/move | 
 |     // constructors work correctly even when U is a reference-like type. This is | 
 |     // necessary only because we eagerly create State::value (see the note on | 
 |     // that symbol for details). If we instead had only the input value as a | 
 |     // member then the default constructors would work fine. | 
 |     // | 
 |     // For example, when R is std::string and U is std::string_view, value is a | 
 |     // reference to the string backed by input_value. The copy constructor would | 
 |     // copy both, so that we wind up with a new input_value object (with the | 
 |     // same contents) and a reference to the *old* input_value object rather | 
 |     // than the new one. | 
 |     struct State { | 
 |       explicit State(const R& input_value_in) | 
 |           : input_value(input_value_in), | 
 |             // Make an implicit conversion to Result before initializing the U | 
 |             // object we store, avoiding calling any explicit constructor of U | 
 |             // from R. | 
 |             // | 
 |             // This simulates the language rules: a function with return type U | 
 |             // that does `return R()` requires R to be implicitly convertible to | 
 |             // U, and uses that path for the conversion, even U Result has an | 
 |             // explicit constructor from R. | 
 |             value(ImplicitCast_<U>(internal::as_const(input_value))) {} | 
 |  | 
 |       // As above, but for the case where we're moving from the ReturnAction | 
 |       // object because it's being used as a OnceAction. | 
 |       explicit State(R&& input_value_in) | 
 |           : input_value(std::move(input_value_in)), | 
 |             // For the same reason as above we make an implicit conversion to U | 
 |             // before initializing the value. | 
 |             // | 
 |             // Unlike above we provide the input value as an rvalue to the | 
 |             // implicit conversion because this is a OnceAction: it's fine if it | 
 |             // wants to consume the input value. | 
 |             value(ImplicitCast_<U>(std::move(input_value))) {} | 
 |  | 
 |       // A copy of the value originally provided by the user. We retain this in | 
 |       // addition to the value of the mock function's result type below in case | 
 |       // the latter is a reference-like type. See the std::string_view example | 
 |       // in the documentation on Return. | 
 |       R input_value; | 
 |  | 
 |       // The value we actually return, as the type returned by the mock function | 
 |       // itself. | 
 |       // | 
 |       // We eagerly initialize this here, rather than lazily doing the implicit | 
 |       // conversion automatically each time Perform is called, for historical | 
 |       // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) | 
 |       // made the Action<U()> conversion operator eagerly convert the R value to | 
 |       // U, but without keeping the R alive. This broke the use case discussed | 
 |       // in the documentation for Return, making reference-like types such as | 
 |       // std::string_view not safe to use as U where the input type R is a | 
 |       // value-like type such as std::string. | 
 |       // | 
 |       // The example the commit gave was not very clear, nor was the issue | 
 |       // thread (https://github.com/google/googlemock/issues/86), but it seems | 
 |       // the worry was about reference-like input types R that flatten to a | 
 |       // value-like type U when being implicitly converted. An example of this | 
 |       // is std::vector<bool>::reference, which is often a proxy type with an | 
 |       // reference to the underlying vector: | 
 |       // | 
 |       //     // Helper method: have the mock function return bools according | 
 |       //     // to the supplied script. | 
 |       //     void SetActions(MockFunction<bool(size_t)>& mock, | 
 |       //                     const std::vector<bool>& script) { | 
 |       //       for (size_t i = 0; i < script.size(); ++i) { | 
 |       //         EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); | 
 |       //       } | 
 |       //     } | 
 |       // | 
 |       //     TEST(Foo, Bar) { | 
 |       //       // Set actions using a temporary vector, whose operator[] | 
 |       //       // returns proxy objects that references that will be | 
 |       //       // dangling once the call to SetActions finishes and the | 
 |       //       // vector is destroyed. | 
 |       //       MockFunction<bool(size_t)> mock; | 
 |       //       SetActions(mock, {false, true}); | 
 |       // | 
 |       //       EXPECT_FALSE(mock.AsStdFunction()(0)); | 
 |       //       EXPECT_TRUE(mock.AsStdFunction()(1)); | 
 |       //     } | 
 |       // | 
 |       // This eager conversion helps with a simple case like this, but doesn't | 
 |       // fully make these types work in general. For example the following still | 
 |       // uses a dangling reference: | 
 |       // | 
 |       //     TEST(Foo, Baz) { | 
 |       //       MockFunction<std::vector<std::string>()> mock; | 
 |       // | 
 |       //       // Return the same vector twice, and then the empty vector | 
 |       //       // thereafter. | 
 |       //       auto action = Return(std::initializer_list<std::string>{ | 
 |       //           "taco", "burrito", | 
 |       //       }); | 
 |       // | 
 |       //       EXPECT_CALL(mock, Call) | 
 |       //           .WillOnce(action) | 
 |       //           .WillOnce(action) | 
 |       //           .WillRepeatedly(Return(std::vector<std::string>{})); | 
 |       // | 
 |       //       EXPECT_THAT(mock.AsStdFunction()(), | 
 |       //                   ElementsAre("taco", "burrito")); | 
 |       //       EXPECT_THAT(mock.AsStdFunction()(), | 
 |       //                   ElementsAre("taco", "burrito")); | 
 |       //       EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); | 
 |       //     } | 
 |       // | 
 |       U value; | 
 |     }; | 
 |  | 
 |     const std::shared_ptr<State> state_; | 
 |   }; | 
 |  | 
 |   R value_; | 
 | }; | 
 |  | 
 | // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. | 
 | // | 
 | // This version applies the type system-defeating hack of moving from T even in | 
 | // the const call operator, checking at runtime that it isn't called more than | 
 | // once, since the user has declared their intent to do so by using ByMove. | 
 | template <typename T> | 
 | class ReturnAction<ByMoveWrapper<T>> final { | 
 |  public: | 
 |   explicit ReturnAction(ByMoveWrapper<T> wrapper) | 
 |       : state_(new State(std::move(wrapper.payload))) {} | 
 |  | 
 |   T operator()() const { | 
 |     GTEST_CHECK_(!state_->called) | 
 |         << "A ByMove() action must be performed at most once."; | 
 |  | 
 |     state_->called = true; | 
 |     return std::move(state_->value); | 
 |   } | 
 |  | 
 |  private: | 
 |   // We store our state on the heap so that we are copyable as required by | 
 |   // Action, despite the fact that we are stateful and T may not be copyable. | 
 |   struct State { | 
 |     explicit State(T&& value_in) : value(std::move(value_in)) {} | 
 |  | 
 |     T value; | 
 |     bool called = false; | 
 |   }; | 
 |  | 
 |   const std::shared_ptr<State> state_; | 
 | }; | 
 |  | 
 | // Implements the ReturnNull() action. | 
 | class ReturnNullAction { | 
 |  public: | 
 |   // Allows ReturnNull() to be used in any pointer-returning function. In C++11 | 
 |   // this is enforced by returning nullptr, and in non-C++11 by asserting a | 
 |   // pointer type on compile time. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static Result Perform(const ArgumentTuple&) { | 
 |     return nullptr; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the Return() action. | 
 | class ReturnVoidAction { | 
 |  public: | 
 |   // Allows Return() to be used in any void-returning function. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static void Perform(const ArgumentTuple&) { | 
 |     static_assert(std::is_void<Result>::value, "Result should be void."); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRef(x) action, which can be used | 
 | // in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefAction { | 
 |  public: | 
 |   // Constructs a ReturnRefAction object from the reference to be returned. | 
 |   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRef(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRef(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     static_assert(std::is_reference<Result>::value, | 
 |                   "use Return instead of ReturnRef to return a value"); | 
 |     return Action<F>(new Impl<F>(ref_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRef(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { return ref_; } | 
 |  | 
 |    private: | 
 |     T& ref_; | 
 |   }; | 
 |  | 
 |   T& ref_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be | 
 | // used in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefOfCopyAction { | 
 |  public: | 
 |   // Constructs a ReturnRefOfCopyAction object from the reference to | 
 |   // be returned. | 
 |   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRefOfCopy(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRefOfCopy(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     static_assert(std::is_reference<Result>::value, | 
 |                   "use Return instead of ReturnRefOfCopy to return a value"); | 
 |     return Action<F>(new Impl<F>(value_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRefOfCopy(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |     Result Perform(const ArgumentTuple&) override { return value_; } | 
 |  | 
 |    private: | 
 |     T value_; | 
 |   }; | 
 |  | 
 |   const T value_; | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRoundRobin(v) action, which can be | 
 | // used in any function that returns the element_type of v. | 
 | template <typename T> | 
 | class ReturnRoundRobinAction { | 
 |  public: | 
 |   explicit ReturnRoundRobinAction(std::vector<T> values) { | 
 |     GTEST_CHECK_(!values.empty()) | 
 |         << "ReturnRoundRobin requires at least one element."; | 
 |     state_->values = std::move(values); | 
 |   } | 
 |  | 
 |   template <typename... Args> | 
 |   T operator()(Args&&...) const { | 
 |     return state_->Next(); | 
 |   } | 
 |  | 
 |  private: | 
 |   struct State { | 
 |     T Next() { | 
 |       T ret_val = values[i++]; | 
 |       if (i == values.size()) i = 0; | 
 |       return ret_val; | 
 |     } | 
 |  | 
 |     std::vector<T> values; | 
 |     size_t i = 0; | 
 |   }; | 
 |   std::shared_ptr<State> state_ = std::make_shared<State>(); | 
 | }; | 
 |  | 
 | // Implements the polymorphic DoDefault() action. | 
 | class DoDefaultAction { | 
 |  public: | 
 |   // This template type conversion operator allows DoDefault() to be | 
 |   // used in any function. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     return Action<F>(); | 
 |   }  // NOLINT | 
 | }; | 
 |  | 
 | // Implements the Assign action to set a given pointer referent to a | 
 | // particular value. | 
 | template <typename T1, typename T2> | 
 | class AssignAction { | 
 |  public: | 
 |   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   void Perform(const ArgumentTuple& /* args */) const { | 
 |     *ptr_ = value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   T1* const ptr_; | 
 |   const T2 value_; | 
 | }; | 
 |  | 
 | #ifndef GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetErrnoAndReturn action to simulate return from | 
 | // various system calls and libc functions. | 
 | template <typename T> | 
 | class SetErrnoAndReturnAction { | 
 |  public: | 
 |   SetErrnoAndReturnAction(int errno_value, T result) | 
 |       : errno_(errno_value), result_(result) {} | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple& /* args */) const { | 
 |     errno = errno_; | 
 |     return result_; | 
 |   } | 
 |  | 
 |  private: | 
 |   const int errno_; | 
 |   const T result_; | 
 | }; | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetArgumentPointee<N>(x) action for any function | 
 | // whose N-th argument (0-based) is a pointer to x's type. | 
 | template <size_t N, typename A, typename = void> | 
 | struct SetArgumentPointeeAction { | 
 |   A value; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *::std::get<N>(std::tie(args...)) = value; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the Invoke(object_ptr, &Class::Method) action. | 
 | template <class Class, typename MethodPtr> | 
 | struct InvokeMethodAction { | 
 |   Class* const obj_ptr; | 
 |   const MethodPtr method_ptr; | 
 |  | 
 |   template <typename... Args> | 
 |   auto operator()(Args&&... args) const | 
 |       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { | 
 |     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(f) action.  The template argument | 
 | // FunctionImpl is the implementation type of f, which can be either a | 
 | // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an | 
 | // Action<F> as long as f's type is compatible with F. | 
 | template <typename FunctionImpl> | 
 | struct InvokeWithoutArgsAction { | 
 |   FunctionImpl function_impl; | 
 |  | 
 |   // Allows InvokeWithoutArgs(f) to be used as any action whose type is | 
 |   // compatible with f. | 
 |   template <typename... Args> | 
 |   auto operator()(const Args&...) -> decltype(function_impl()) { | 
 |     return function_impl(); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. | 
 | template <class Class, typename MethodPtr> | 
 | struct InvokeMethodWithoutArgsAction { | 
 |   Class* const obj_ptr; | 
 |   const MethodPtr method_ptr; | 
 |  | 
 |   using ReturnType = | 
 |       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); | 
 |  | 
 |   template <typename... Args> | 
 |   ReturnType operator()(const Args&...) const { | 
 |     return (obj_ptr->*method_ptr)(); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the IgnoreResult(action) action. | 
 | template <typename A> | 
 | class IgnoreResultAction { | 
 |  public: | 
 |   explicit IgnoreResultAction(const A& action) : action_(action) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     // Assert statement belongs here because this is the best place to verify | 
 |     // conditions on F. It produces the clearest error messages | 
 |     // in most compilers. | 
 |     // Impl really belongs in this scope as a local class but can't | 
 |     // because MSVC produces duplicate symbols in different translation units | 
 |     // in this case. Until MS fixes that bug we put Impl into the class scope | 
 |     // and put the typedef both here (for use in assert statement) and | 
 |     // in the Impl class. But both definitions must be the same. | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |  | 
 |     // Asserts at compile time that F returns void. | 
 |     static_assert(std::is_void<Result>::value, "Result type should be void."); | 
 |  | 
 |     return Action<F>(new Impl<F>(action_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const A& action) : action_(action) {} | 
 |  | 
 |     void Perform(const ArgumentTuple& args) override { | 
 |       // Performs the action and ignores its result. | 
 |       action_.Perform(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     // Type OriginalFunction is the same as F except that its return | 
 |     // type is IgnoredValue. | 
 |     typedef | 
 |         typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; | 
 |  | 
 |     const Action<OriginalFunction> action_; | 
 |   }; | 
 |  | 
 |   const A action_; | 
 | }; | 
 |  | 
 | template <typename InnerAction, size_t... I> | 
 | struct WithArgsAction { | 
 |   InnerAction inner_action; | 
 |  | 
 |   // The signature of the function as seen by the inner action, given an out | 
 |   // action with the given result and argument types. | 
 |   template <typename R, typename... Args> | 
 |   using InnerSignature = | 
 |       R(typename std::tuple_element<I, std::tuple<Args...>>::type...); | 
 |  | 
 |   // Rather than a call operator, we must define conversion operators to | 
 |   // particular action types. This is necessary for embedded actions like | 
 |   // DoDefault(), which rely on an action conversion operators rather than | 
 |   // providing a call operator because even with a particular set of arguments | 
 |   // they don't have a fixed return type. | 
 |  | 
 |   template < | 
 |       typename R, typename... Args, | 
 |       typename std::enable_if< | 
 |           std::is_convertible<InnerAction, | 
 |                               // Unfortunately we can't use the InnerSignature | 
 |                               // alias here; MSVC complains about the I | 
 |                               // parameter pack not being expanded (error C3520) | 
 |                               // despite it being expanded in the type alias. | 
 |                               // TupleElement is also an MSVC workaround. | 
 |                               // See its definition for details. | 
 |                               OnceAction<R(internal::TupleElement< | 
 |                                            I, std::tuple<Args...>>...)>>::value, | 
 |           int>::type = 0> | 
 |   operator OnceAction<R(Args...)>() && {  // NOLINT | 
 |     struct OA { | 
 |       OnceAction<InnerSignature<R, Args...>> inner_action; | 
 |  | 
 |       R operator()(Args&&... args) && { | 
 |         return std::move(inner_action) | 
 |             .Call(std::get<I>( | 
 |                 std::forward_as_tuple(std::forward<Args>(args)...))...); | 
 |       } | 
 |     }; | 
 |  | 
 |     return OA{std::move(inner_action)}; | 
 |   } | 
 |  | 
 |   template < | 
 |       typename R, typename... Args, | 
 |       typename std::enable_if< | 
 |           std::is_convertible<const InnerAction&, | 
 |                               // Unfortunately we can't use the InnerSignature | 
 |                               // alias here; MSVC complains about the I | 
 |                               // parameter pack not being expanded (error C3520) | 
 |                               // despite it being expanded in the type alias. | 
 |                               // TupleElement is also an MSVC workaround. | 
 |                               // See its definition for details. | 
 |                               Action<R(internal::TupleElement< | 
 |                                        I, std::tuple<Args...>>...)>>::value, | 
 |           int>::type = 0> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     Action<InnerSignature<R, Args...>> converted(inner_action); | 
 |  | 
 |     return [converted](Args&&... args) -> R { | 
 |       return converted.Perform(std::forward_as_tuple( | 
 |           std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); | 
 |     }; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename... Actions> | 
 | class DoAllAction; | 
 |  | 
 | // Base case: only a single action. | 
 | template <typename FinalAction> | 
 | class DoAllAction<FinalAction> { | 
 |  public: | 
 |   struct UserConstructorTag {}; | 
 |  | 
 |   template <typename T> | 
 |   explicit DoAllAction(UserConstructorTag, T&& action) | 
 |       : final_action_(std::forward<T>(action)) {} | 
 |  | 
 |   // Rather than a call operator, we must define conversion operators to | 
 |   // particular action types. This is necessary for embedded actions like | 
 |   // DoDefault(), which rely on an action conversion operators rather than | 
 |   // providing a call operator because even with a particular set of arguments | 
 |   // they don't have a fixed return type. | 
 |  | 
 |   template <typename R, typename... Args, | 
 |             typename std::enable_if< | 
 |                 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, | 
 |                 int>::type = 0> | 
 |   operator OnceAction<R(Args...)>() && {  // NOLINT | 
 |     return std::move(final_action_); | 
 |   } | 
 |  | 
 |   template < | 
 |       typename R, typename... Args, | 
 |       typename std::enable_if< | 
 |           std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, | 
 |           int>::type = 0> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     return final_action_; | 
 |   } | 
 |  | 
 |  private: | 
 |   FinalAction final_action_; | 
 | }; | 
 |  | 
 | // Recursive case: support N actions by calling the initial action and then | 
 | // calling through to the base class containing N-1 actions. | 
 | template <typename InitialAction, typename... OtherActions> | 
 | class DoAllAction<InitialAction, OtherActions...> | 
 |     : private DoAllAction<OtherActions...> { | 
 |  private: | 
 |   using Base = DoAllAction<OtherActions...>; | 
 |  | 
 |   // The type of reference that should be provided to an initial action for a | 
 |   // mocked function parameter of type T. | 
 |   // | 
 |   // There are two quirks here: | 
 |   // | 
 |   //  *  Unlike most forwarding functions, we pass scalars through by value. | 
 |   //     This isn't strictly necessary because an lvalue reference would work | 
 |   //     fine too and be consistent with other non-reference types, but it's | 
 |   //     perhaps less surprising. | 
 |   // | 
 |   //     For example if the mocked function has signature void(int), then it | 
 |   //     might seem surprising for the user's initial action to need to be | 
 |   //     convertible to Action<void(const int&)>. This is perhaps less | 
 |   //     surprising for a non-scalar type where there may be a performance | 
 |   //     impact, or it might even be impossible, to pass by value. | 
 |   // | 
 |   //  *  More surprisingly, `const T&` is often not a const reference type. | 
 |   //     By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to | 
 |   //     U& or U&& for some non-scalar type U, then InitialActionArgType<T> is | 
 |   //     U&. In other words, we may hand over a non-const reference. | 
 |   // | 
 |   //     So for example, given some non-scalar type Obj we have the following | 
 |   //     mappings: | 
 |   // | 
 |   //            T               InitialActionArgType<T> | 
 |   //         -------            ----------------------- | 
 |   //         Obj                const Obj& | 
 |   //         Obj&               Obj& | 
 |   //         Obj&&              Obj& | 
 |   //         const Obj          const Obj& | 
 |   //         const Obj&         const Obj& | 
 |   //         const Obj&&        const Obj& | 
 |   // | 
 |   //     In other words, the initial actions get a mutable view of an non-scalar | 
 |   //     argument if and only if the mock function itself accepts a non-const | 
 |   //     reference type. They are never given an rvalue reference to an | 
 |   //     non-scalar type. | 
 |   // | 
 |   //     This situation makes sense if you imagine use with a matcher that is | 
 |   //     designed to write through a reference. For example, if the caller wants | 
 |   //     to fill in a reference argument and then return a canned value: | 
 |   // | 
 |   //         EXPECT_CALL(mock, Call) | 
 |   //             .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); | 
 |   // | 
 |   template <typename T> | 
 |   using InitialActionArgType = | 
 |       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; | 
 |  | 
 |  public: | 
 |   struct UserConstructorTag {}; | 
 |  | 
 |   template <typename T, typename... U> | 
 |   explicit DoAllAction(UserConstructorTag, T&& initial_action, | 
 |                        U&&... other_actions) | 
 |       : Base({}, std::forward<U>(other_actions)...), | 
 |         initial_action_(std::forward<T>(initial_action)) {} | 
 |  | 
 |   template <typename R, typename... Args, | 
 |             typename std::enable_if< | 
 |                 conjunction< | 
 |                     // Both the initial action and the rest must support | 
 |                     // conversion to OnceAction. | 
 |                     std::is_convertible< | 
 |                         InitialAction, | 
 |                         OnceAction<void(InitialActionArgType<Args>...)>>, | 
 |                     std::is_convertible<Base, OnceAction<R(Args...)>>>::value, | 
 |                 int>::type = 0> | 
 |   operator OnceAction<R(Args...)>() && {  // NOLINT | 
 |     // Return an action that first calls the initial action with arguments | 
 |     // filtered through InitialActionArgType, then forwards arguments directly | 
 |     // to the base class to deal with the remaining actions. | 
 |     struct OA { | 
 |       OnceAction<void(InitialActionArgType<Args>...)> initial_action; | 
 |       OnceAction<R(Args...)> remaining_actions; | 
 |  | 
 |       R operator()(Args... args) && { | 
 |         std::move(initial_action) | 
 |             .Call(static_cast<InitialActionArgType<Args>>(args)...); | 
 |  | 
 |         return std::move(remaining_actions).Call(std::forward<Args>(args)...); | 
 |       } | 
 |     }; | 
 |  | 
 |     return OA{ | 
 |         std::move(initial_action_), | 
 |         std::move(static_cast<Base&>(*this)), | 
 |     }; | 
 |   } | 
 |  | 
 |   template < | 
 |       typename R, typename... Args, | 
 |       typename std::enable_if< | 
 |           conjunction< | 
 |               // Both the initial action and the rest must support conversion to | 
 |               // Action. | 
 |               std::is_convertible<const InitialAction&, | 
 |                                   Action<void(InitialActionArgType<Args>...)>>, | 
 |               std::is_convertible<const Base&, Action<R(Args...)>>>::value, | 
 |           int>::type = 0> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     // Return an action that first calls the initial action with arguments | 
 |     // filtered through InitialActionArgType, then forwards arguments directly | 
 |     // to the base class to deal with the remaining actions. | 
 |     struct OA { | 
 |       Action<void(InitialActionArgType<Args>...)> initial_action; | 
 |       Action<R(Args...)> remaining_actions; | 
 |  | 
 |       R operator()(Args... args) const { | 
 |         initial_action.Perform(std::forward_as_tuple( | 
 |             static_cast<InitialActionArgType<Args>>(args)...)); | 
 |  | 
 |         return remaining_actions.Perform( | 
 |             std::forward_as_tuple(std::forward<Args>(args)...)); | 
 |       } | 
 |     }; | 
 |  | 
 |     return OA{ | 
 |         initial_action_, | 
 |         static_cast<const Base&>(*this), | 
 |     }; | 
 |   } | 
 |  | 
 |  private: | 
 |   InitialAction initial_action_; | 
 | }; | 
 |  | 
 | template <typename T, typename... Params> | 
 | struct ReturnNewAction { | 
 |   T* operator()() const { | 
 |     return internal::Apply( | 
 |         [](const Params&... unpacked_params) { | 
 |           return new T(unpacked_params...); | 
 |         }, | 
 |         params); | 
 |   } | 
 |   std::tuple<Params...> params; | 
 | }; | 
 |  | 
 | template <size_t k> | 
 | struct ReturnArgAction { | 
 |   template <typename... Args, | 
 |             typename = typename std::enable_if<(k < sizeof...(Args))>::type> | 
 |   auto operator()(Args&&... args) const -> decltype(std::get<k>( | 
 |       std::forward_as_tuple(std::forward<Args>(args)...))) { | 
 |     return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename Ptr> | 
 | struct SaveArgAction { | 
 |   Ptr pointer; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *pointer = std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename Ptr> | 
 | struct SaveArgPointeeAction { | 
 |   Ptr pointer; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     *pointer = *std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename T> | 
 | struct SetArgRefereeAction { | 
 |   T value; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(Args&&... args) const { | 
 |     using argk_type = | 
 |         typename ::std::tuple_element<k, std::tuple<Args...>>::type; | 
 |     static_assert(std::is_lvalue_reference<argk_type>::value, | 
 |                   "Argument must be a reference type."); | 
 |     std::get<k>(std::tie(args...)) = value; | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k, typename I1, typename I2> | 
 | struct SetArrayArgumentAction { | 
 |   I1 first; | 
 |   I2 last; | 
 |  | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     auto value = std::get<k>(std::tie(args...)); | 
 |     for (auto it = first; it != last; ++it, (void)++value) { | 
 |       *value = *it; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template <size_t k> | 
 | struct DeleteArgAction { | 
 |   template <typename... Args> | 
 |   void operator()(const Args&... args) const { | 
 |     delete std::get<k>(std::tie(args...)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Ptr> | 
 | struct ReturnPointeeAction { | 
 |   Ptr pointer; | 
 |   template <typename... Args> | 
 |   auto operator()(const Args&...) const -> decltype(*pointer) { | 
 |     return *pointer; | 
 |   } | 
 | }; | 
 |  | 
 | #if GTEST_HAS_EXCEPTIONS | 
 | template <typename T> | 
 | struct ThrowAction { | 
 |   T exception; | 
 |   // We use a conversion operator to adapt to any return type. | 
 |   template <typename R, typename... Args> | 
 |   operator Action<R(Args...)>() const {  // NOLINT | 
 |     T copy = exception; | 
 |     return [copy](Args...) -> R { throw copy; }; | 
 |   } | 
 | }; | 
 | #endif  // GTEST_HAS_EXCEPTIONS | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // An Unused object can be implicitly constructed from ANY value. | 
 | // This is handy when defining actions that ignore some or all of the | 
 | // mock function arguments.  For example, given | 
 | // | 
 | //   MOCK_METHOD3(Foo, double(const string& label, double x, double y)); | 
 | //   MOCK_METHOD3(Bar, double(int index, double x, double y)); | 
 | // | 
 | // instead of | 
 | // | 
 | //   double DistanceToOriginWithLabel(const string& label, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   double DistanceToOriginWithIndex(int index, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithLabel)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithIndex)); | 
 | // | 
 | // you could write | 
 | // | 
 | //   // We can declare any uninteresting argument as Unused. | 
 | //   double DistanceToOrigin(Unused, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | typedef internal::IgnoredValue Unused; | 
 |  | 
 | // Creates an action that does actions a1, a2, ..., sequentially in | 
 | // each invocation. All but the last action will have a readonly view of the | 
 | // arguments. | 
 | template <typename... Action> | 
 | internal::DoAllAction<typename std::decay<Action>::type...> DoAll( | 
 |     Action&&... action) { | 
 |   return internal::DoAllAction<typename std::decay<Action>::type...>( | 
 |       {}, std::forward<Action>(action)...); | 
 | } | 
 |  | 
 | // WithArg<k>(an_action) creates an action that passes the k-th | 
 | // (0-based) argument of the mock function to an_action and performs | 
 | // it.  It adapts an action accepting one argument to one that accepts | 
 | // multiple arguments.  For convenience, we also provide | 
 | // WithArgs<k>(an_action) (defined below) as a synonym. | 
 | template <size_t k, typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( | 
 |     InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes | 
 | // the selected arguments of the mock function to an_action and | 
 | // performs it.  It serves as an adaptor between actions with | 
 | // different argument lists. | 
 | template <size_t k, size_t... ks, typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> | 
 | WithArgs(InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // WithoutArgs(inner_action) can be used in a mock function with a | 
 | // non-empty argument list to perform inner_action, which takes no | 
 | // argument.  In other words, it adapts an action accepting no | 
 | // argument to one that accepts (and ignores) arguments. | 
 | template <typename InnerAction> | 
 | internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( | 
 |     InnerAction&& action) { | 
 |   return {std::forward<InnerAction>(action)}; | 
 | } | 
 |  | 
 | // Creates an action that returns a value. | 
 | // | 
 | // The returned type can be used with a mock function returning a non-void, | 
 | // non-reference type U as follows: | 
 | // | 
 | //  *  If R is convertible to U and U is move-constructible, then the action can | 
 | //     be used with WillOnce. | 
 | // | 
 | //  *  If const R& is convertible to U and U is copy-constructible, then the | 
 | //     action can be used with both WillOnce and WillRepeatedly. | 
 | // | 
 | // The mock expectation contains the R value from which the U return value is | 
 | // constructed (a move/copy of the argument to Return). This means that the R | 
 | // value will survive at least until the mock object's expectations are cleared | 
 | // or the mock object is destroyed, meaning that U can safely be a | 
 | // reference-like type such as std::string_view: | 
 | // | 
 | //     // The mock function returns a view of a copy of the string fed to | 
 | //     // Return. The view is valid even after the action is performed. | 
 | //     MockFunction<std::string_view()> mock; | 
 | //     EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); | 
 | //     const std::string_view result = mock.AsStdFunction()(); | 
 | //     EXPECT_EQ("taco", result); | 
 | // | 
 | template <typename R> | 
 | internal::ReturnAction<R> Return(R value) { | 
 |   return internal::ReturnAction<R>(std::move(value)); | 
 | } | 
 |  | 
 | // Creates an action that returns NULL. | 
 | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | 
 |   return MakePolymorphicAction(internal::ReturnNullAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns from a void function. | 
 | inline PolymorphicAction<internal::ReturnVoidAction> Return() { | 
 |   return MakePolymorphicAction(internal::ReturnVoidAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns the reference to a variable. | 
 | template <typename R> | 
 | inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT | 
 |   return internal::ReturnRefAction<R>(x); | 
 | } | 
 |  | 
 | // Prevent using ReturnRef on reference to temporary. | 
 | template <typename R, R* = nullptr> | 
 | internal::ReturnRefAction<R> ReturnRef(R&&) = delete; | 
 |  | 
 | // Creates an action that returns the reference to a copy of the | 
 | // argument.  The copy is created when the action is constructed and | 
 | // lives as long as the action. | 
 | template <typename R> | 
 | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | 
 |   return internal::ReturnRefOfCopyAction<R>(x); | 
 | } | 
 |  | 
 | // DEPRECATED: use Return(x) directly with WillOnce. | 
 | // | 
 | // Modifies the parent action (a Return() action) to perform a move of the | 
 | // argument instead of a copy. | 
 | // Return(ByMove()) actions can only be executed once and will assert this | 
 | // invariant. | 
 | template <typename R> | 
 | internal::ByMoveWrapper<R> ByMove(R x) { | 
 |   return internal::ByMoveWrapper<R>(std::move(x)); | 
 | } | 
 |  | 
 | // Creates an action that returns an element of `vals`. Calling this action will | 
 | // repeatedly return the next value from `vals` until it reaches the end and | 
 | // will restart from the beginning. | 
 | template <typename T> | 
 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { | 
 |   return internal::ReturnRoundRobinAction<T>(std::move(vals)); | 
 | } | 
 |  | 
 | // Creates an action that returns an element of `vals`. Calling this action will | 
 | // repeatedly return the next value from `vals` until it reaches the end and | 
 | // will restart from the beginning. | 
 | template <typename T> | 
 | internal::ReturnRoundRobinAction<T> ReturnRoundRobin( | 
 |     std::initializer_list<T> vals) { | 
 |   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); | 
 | } | 
 |  | 
 | // Creates an action that does the default action for the give mock function. | 
 | inline internal::DoDefaultAction DoDefault() { | 
 |   return internal::DoDefaultAction(); | 
 | } | 
 |  | 
 | // Creates an action that sets the variable pointed by the N-th | 
 | // (0-based) function argument to 'value'. | 
 | template <size_t N, typename T> | 
 | internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { | 
 |   return {std::move(value)}; | 
 | } | 
 |  | 
 | // The following version is DEPRECATED. | 
 | template <size_t N, typename T> | 
 | internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { | 
 |   return {std::move(value)}; | 
 | } | 
 |  | 
 | // Creates an action that sets a pointer referent to a given value. | 
 | template <typename T1, typename T2> | 
 | PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { | 
 |   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | 
 | } | 
 |  | 
 | #ifndef GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Creates an action that sets errno and returns the appropriate error. | 
 | template <typename T> | 
 | PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( | 
 |     int errval, T result) { | 
 |   return MakePolymorphicAction( | 
 |       internal::SetErrnoAndReturnAction<T>(errval, result)); | 
 | } | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Various overloads for Invoke(). | 
 |  | 
 | // Legacy function. | 
 | // Actions can now be implicitly constructed from callables. No need to create | 
 | // wrapper objects. | 
 | // This function exists for backwards compatibility. | 
 | template <typename FunctionImpl> | 
 | typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { | 
 |   return std::forward<FunctionImpl>(function_impl); | 
 | } | 
 |  | 
 | // Creates an action that invokes the given method on the given object | 
 | // with the mock function's arguments. | 
 | template <class Class, typename MethodPtr> | 
 | internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, | 
 |                                                       MethodPtr method_ptr) { | 
 |   return {obj_ptr, method_ptr}; | 
 | } | 
 |  | 
 | // Creates an action that invokes 'function_impl' with no argument. | 
 | template <typename FunctionImpl> | 
 | internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> | 
 | InvokeWithoutArgs(FunctionImpl function_impl) { | 
 |   return {std::move(function_impl)}; | 
 | } | 
 |  | 
 | // Creates an action that invokes the given method on the given object | 
 | // with no argument. | 
 | template <class Class, typename MethodPtr> | 
 | internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( | 
 |     Class* obj_ptr, MethodPtr method_ptr) { | 
 |   return {obj_ptr, method_ptr}; | 
 | } | 
 |  | 
 | // Creates an action that performs an_action and throws away its | 
 | // result.  In other words, it changes the return type of an_action to | 
 | // void.  an_action MUST NOT return void, or the code won't compile. | 
 | template <typename A> | 
 | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { | 
 |   return internal::IgnoreResultAction<A>(an_action); | 
 | } | 
 |  | 
 | // Creates a reference wrapper for the given L-value.  If necessary, | 
 | // you can explicitly specify the type of the reference.  For example, | 
 | // suppose 'derived' is an object of type Derived, ByRef(derived) | 
 | // would wrap a Derived&.  If you want to wrap a const Base& instead, | 
 | // where Base is a base class of Derived, just write: | 
 | // | 
 | //   ByRef<const Base>(derived) | 
 | // | 
 | // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. | 
 | // However, it may still be used for consistency with ByMove(). | 
 | template <typename T> | 
 | inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT | 
 |   return ::std::reference_wrapper<T>(l_value); | 
 | } | 
 |  | 
 | // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new | 
 | // instance of type T, constructed on the heap with constructor arguments | 
 | // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. | 
 | template <typename T, typename... Params> | 
 | internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( | 
 |     Params&&... params) { | 
 |   return {std::forward_as_tuple(std::forward<Params>(params)...)}; | 
 | } | 
 |  | 
 | // Action ReturnArg<k>() returns the k-th argument of the mock function. | 
 | template <size_t k> | 
 | internal::ReturnArgAction<k> ReturnArg() { | 
 |   return {}; | 
 | } | 
 |  | 
 | // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the | 
 | // mock function to *pointer. | 
 | template <size_t k, typename Ptr> | 
 | internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action SaveArgPointee<k>(pointer) saves the value pointed to | 
 | // by the k-th (0-based) argument of the mock function to *pointer. | 
 | template <size_t k, typename Ptr> | 
 | internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action SetArgReferee<k>(value) assigns 'value' to the variable | 
 | // referenced by the k-th (0-based) argument of the mock function. | 
 | template <size_t k, typename T> | 
 | internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( | 
 |     T&& value) { | 
 |   return {std::forward<T>(value)}; | 
 | } | 
 |  | 
 | // Action SetArrayArgument<k>(first, last) copies the elements in | 
 | // source range [first, last) to the array pointed to by the k-th | 
 | // (0-based) argument, which can be either a pointer or an | 
 | // iterator. The action does not take ownership of the elements in the | 
 | // source range. | 
 | template <size_t k, typename I1, typename I2> | 
 | internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, | 
 |                                                              I2 last) { | 
 |   return {first, last}; | 
 | } | 
 |  | 
 | // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock | 
 | // function. | 
 | template <size_t k> | 
 | internal::DeleteArgAction<k> DeleteArg() { | 
 |   return {}; | 
 | } | 
 |  | 
 | // This action returns the value pointed to by 'pointer'. | 
 | template <typename Ptr> | 
 | internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { | 
 |   return {pointer}; | 
 | } | 
 |  | 
 | // Action Throw(exception) can be used in a mock function of any type | 
 | // to throw the given exception.  Any copyable value can be thrown. | 
 | #if GTEST_HAS_EXCEPTIONS | 
 | template <typename T> | 
 | internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { | 
 |   return {std::forward<T>(exception)}; | 
 | } | 
 | #endif  // GTEST_HAS_EXCEPTIONS | 
 |  | 
 | namespace internal { | 
 |  | 
 | // A macro from the ACTION* family (defined later in gmock-generated-actions.h) | 
 | // defines an action that can be used in a mock function.  Typically, | 
 | // these actions only care about a subset of the arguments of the mock | 
 | // function.  For example, if such an action only uses the second | 
 | // argument, it can be used in any mock function that takes >= 2 | 
 | // arguments where the type of the second argument is compatible. | 
 | // | 
 | // Therefore, the action implementation must be prepared to take more | 
 | // arguments than it needs.  The ExcessiveArg type is used to | 
 | // represent those excessive arguments.  In order to keep the compiler | 
 | // error messages tractable, we define it in the testing namespace | 
 | // instead of testing::internal.  However, this is an INTERNAL TYPE | 
 | // and subject to change without notice, so a user MUST NOT USE THIS | 
 | // TYPE DIRECTLY. | 
 | struct ExcessiveArg {}; | 
 |  | 
 | // Builds an implementation of an Action<> for some particular signature, using | 
 | // a class defined by an ACTION* macro. | 
 | template <typename F, typename Impl> | 
 | struct ActionImpl; | 
 |  | 
 | template <typename Impl> | 
 | struct ImplBase { | 
 |   struct Holder { | 
 |     // Allows each copy of the Action<> to get to the Impl. | 
 |     explicit operator const Impl&() const { return *ptr; } | 
 |     std::shared_ptr<Impl> ptr; | 
 |   }; | 
 |   using type = typename std::conditional<std::is_constructible<Impl>::value, | 
 |                                          Impl, Holder>::type; | 
 | }; | 
 |  | 
 | template <typename R, typename... Args, typename Impl> | 
 | struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { | 
 |   using Base = typename ImplBase<Impl>::type; | 
 |   using function_type = R(Args...); | 
 |   using args_type = std::tuple<Args...>; | 
 |  | 
 |   ActionImpl() = default;  // Only defined if appropriate for Base. | 
 |   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} | 
 |  | 
 |   R operator()(Args&&... arg) const { | 
 |     static constexpr size_t kMaxArgs = | 
 |         sizeof...(Args) <= 10 ? sizeof...(Args) : 10; | 
 |     return Apply(MakeIndexSequence<kMaxArgs>{}, | 
 |                  MakeIndexSequence<10 - kMaxArgs>{}, | 
 |                  args_type{std::forward<Args>(arg)...}); | 
 |   } | 
 |  | 
 |   template <std::size_t... arg_id, std::size_t... excess_id> | 
 |   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, | 
 |           const args_type& args) const { | 
 |     // Impl need not be specific to the signature of action being implemented; | 
 |     // only the implementing function body needs to have all of the specific | 
 |     // types instantiated.  Up to 10 of the args that are provided by the | 
 |     // args_type get passed, followed by a dummy of unspecified type for the | 
 |     // remainder up to 10 explicit args. | 
 |     static constexpr ExcessiveArg kExcessArg{}; | 
 |     return static_cast<const Impl&>(*this) | 
 |         .template gmock_PerformImpl< | 
 |             /*function_type=*/function_type, /*return_type=*/R, | 
 |             /*args_type=*/args_type, | 
 |             /*argN_type=*/ | 
 |             typename std::tuple_element<arg_id, args_type>::type...>( | 
 |             /*args=*/args, std::get<arg_id>(args)..., | 
 |             ((void)excess_id, kExcessArg)...); | 
 |   } | 
 | }; | 
 |  | 
 | // Stores a default-constructed Impl as part of the Action<>'s | 
 | // std::function<>. The Impl should be trivial to copy. | 
 | template <typename F, typename Impl> | 
 | ::testing::Action<F> MakeAction() { | 
 |   return ::testing::Action<F>(ActionImpl<F, Impl>()); | 
 | } | 
 |  | 
 | // Stores just the one given instance of Impl. | 
 | template <typename F, typename Impl> | 
 | ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { | 
 |   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); | 
 | } | 
 |  | 
 | #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ | 
 |   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ | 
 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \ | 
 |   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ | 
 |       GMOCK_INTERNAL_ARG_UNUSED, , 10) | 
 |  | 
 | #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i | 
 | #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ | 
 |   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) | 
 |  | 
 | #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type | 
 | #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type | 
 | #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type | 
 | #define GMOCK_ACTION_TYPE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ | 
 |   , param##_type gmock_p##i | 
 | #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ | 
 |   , std::forward<param##_type>(gmock_p##i) | 
 | #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ | 
 |   , param(::std::forward<param##_type>(gmock_p##i)) | 
 | #define GMOCK_ACTION_INIT_PARAMS_(params) \ | 
 |   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) | 
 |  | 
 | #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; | 
 | #define GMOCK_ACTION_FIELD_PARAMS_(params) \ | 
 |   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) | 
 |  | 
 | #define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \ | 
 |   class full_name {                                                            \ | 
 |    public:                                                                     \ | 
 |     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \ | 
 |         : impl_(std::make_shared<gmock_Impl>(                                  \ | 
 |               GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \ | 
 |     full_name(const full_name&) = default;                                     \ | 
 |     full_name(full_name&&) noexcept = default;                                 \ | 
 |     template <typename F>                                                      \ | 
 |     operator ::testing::Action<F>() const {                                    \ | 
 |       return ::testing::internal::MakeAction<F>(impl_);                        \ | 
 |     }                                                                          \ | 
 |                                                                                \ | 
 |    private:                                                                    \ | 
 |     class gmock_Impl {                                                         \ | 
 |      public:                                                                   \ | 
 |       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \ | 
 |           : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \ | 
 |       template <typename function_type, typename return_type,                  \ | 
 |                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \ | 
 |       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \ | 
 |       GMOCK_ACTION_FIELD_PARAMS_(params)                                       \ | 
 |     };                                                                         \ | 
 |     std::shared_ptr<const gmock_Impl> impl_;                                   \ | 
 |   };                                                                           \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \ | 
 |   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \ | 
 |       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \ | 
 |   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \ | 
 |       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \ | 
 |     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \ | 
 |         GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \ | 
 |   }                                                                            \ | 
 |   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \ | 
 |   template <typename function_type, typename return_type, typename args_type,  \ | 
 |             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \ | 
 |   return_type                                                                  \ | 
 |   full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ | 
 |       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. | 
 | #define ACTION(name)                                                          \ | 
 |   class name##Action {                                                        \ | 
 |    public:                                                                    \ | 
 |     explicit name##Action() noexcept {}                                       \ | 
 |     name##Action(const name##Action&) noexcept {}                             \ | 
 |     template <typename F>                                                     \ | 
 |     operator ::testing::Action<F>() const {                                   \ | 
 |       return ::testing::internal::MakeAction<F, gmock_Impl>();                \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |    private:                                                                   \ | 
 |     class gmock_Impl {                                                        \ | 
 |      public:                                                                  \ | 
 |       template <typename function_type, typename return_type,                 \ | 
 |                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \ | 
 |       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | 
 |     };                                                                        \ | 
 |   };                                                                          \ | 
 |   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \ | 
 |   inline name##Action name() { return name##Action(); }                       \ | 
 |   template <typename function_type, typename return_type, typename args_type, \ | 
 |             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \ | 
 |   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \ | 
 |       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | 
 |  | 
 | #define ACTION_P(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P2(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P3(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P4(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P5(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P6(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P7(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P8(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P9(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) | 
 |  | 
 | #define ACTION_P10(name, ...) \ | 
 |   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100 | 
 |  | 
 | #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |