| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/base64.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include "../internal.h" |
| |
| |
| // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| |
| // arguments for a slightly simpler implementation. |
| static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { |
| crypto_word_t aw = a; |
| crypto_word_t bw = b; |
| // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same |
| // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. |
| return constant_time_msb_w(aw - bw); |
| } |
| |
| // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| |
| // and |CONSTTIME_FALSE_8| otherwise. |
| static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, |
| uint8_t max) { |
| a -= min; |
| return constant_time_lt_args_8(a, max - min + 1); |
| } |
| |
| // Encoding. |
| |
| static uint8_t conv_bin2ascii(uint8_t a) { |
| // Since PEM is sometimes used to carry private keys, we encode base64 data |
| // itself in constant-time. |
| a &= 0x3f; |
| uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); |
| ret = |
| constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); |
| ret = |
| constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); |
| ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); |
| return ret; |
| } |
| |
| static_assert(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, |
| "data length must be a multiple of base64 chunk size"); |
| |
| int EVP_EncodedLength(size_t *out_len, size_t len) { |
| if (len + 2 < len) { |
| return 0; |
| } |
| len += 2; |
| len /= 3; |
| |
| if (((len << 2) >> 2) != len) { |
| return 0; |
| } |
| len <<= 2; |
| |
| if (len + 1 < len) { |
| return 0; |
| } |
| len++; |
| |
| *out_len = len; |
| return 1; |
| } |
| |
| EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) { |
| return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX)); |
| } |
| |
| void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) { |
| OPENSSL_free(ctx); |
| } |
| |
| void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
| } |
| |
| void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, size_t in_len) { |
| size_t total = 0; |
| |
| *out_len = 0; |
| if (in_len == 0) { |
| return; |
| } |
| |
| assert(ctx->data_used < sizeof(ctx->data)); |
| |
| if (sizeof(ctx->data) - ctx->data_used > in_len) { |
| OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); |
| ctx->data_used += (unsigned)in_len; |
| return; |
| } |
| |
| if (ctx->data_used != 0) { |
| const size_t todo = sizeof(ctx->data) - ctx->data_used; |
| OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); |
| in += todo; |
| in_len -= todo; |
| |
| size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); |
| ctx->data_used = 0; |
| |
| out += encoded; |
| *(out++) = '\n'; |
| *out = '\0'; |
| |
| total = encoded + 1; |
| } |
| |
| while (in_len >= sizeof(ctx->data)) { |
| size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); |
| in += sizeof(ctx->data); |
| in_len -= sizeof(ctx->data); |
| |
| out += encoded; |
| *(out++) = '\n'; |
| *out = '\0'; |
| |
| if (total + encoded + 1 < total) { |
| *out_len = 0; |
| return; |
| } |
| |
| total += encoded + 1; |
| } |
| |
| if (in_len != 0) { |
| OPENSSL_memcpy(ctx->data, in, in_len); |
| } |
| |
| ctx->data_used = (unsigned)in_len; |
| |
| if (total > INT_MAX) { |
| // We cannot signal an error, but we can at least avoid making *out_len |
| // negative. |
| total = 0; |
| } |
| *out_len = (int)total; |
| } |
| |
| void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
| if (ctx->data_used == 0) { |
| *out_len = 0; |
| return; |
| } |
| |
| size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); |
| out[encoded++] = '\n'; |
| out[encoded] = '\0'; |
| ctx->data_used = 0; |
| |
| // ctx->data_used is bounded by sizeof(ctx->data), so this does not |
| // overflow. |
| assert(encoded <= INT_MAX); |
| *out_len = (int)encoded; |
| } |
| |
| size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
| uint32_t l; |
| size_t remaining = src_len, ret = 0; |
| |
| while (remaining) { |
| if (remaining >= 3) { |
| l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; |
| *(dst++) = conv_bin2ascii(l >> 18L); |
| *(dst++) = conv_bin2ascii(l >> 12L); |
| *(dst++) = conv_bin2ascii(l >> 6L); |
| *(dst++) = conv_bin2ascii(l); |
| remaining -= 3; |
| } else { |
| l = ((uint32_t)src[0]) << 16L; |
| if (remaining == 2) { |
| l |= ((uint32_t)src[1] << 8L); |
| } |
| |
| *(dst++) = conv_bin2ascii(l >> 18L); |
| *(dst++) = conv_bin2ascii(l >> 12L); |
| *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); |
| *(dst++) = '='; |
| remaining = 0; |
| } |
| ret += 4; |
| src += 3; |
| } |
| |
| *dst = '\0'; |
| return ret; |
| } |
| |
| |
| // Decoding. |
| |
| int EVP_DecodedLength(size_t *out_len, size_t len) { |
| if (len % 4 != 0) { |
| return 0; |
| } |
| |
| *out_len = (len / 4) * 3; |
| return 1; |
| } |
| |
| void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); |
| } |
| |
| static uint8_t base64_ascii_to_bin(uint8_t a) { |
| // Since PEM is sometimes used to carry private keys, we decode base64 data |
| // itself in constant-time. |
| const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); |
| const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); |
| const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); |
| const uint8_t is_plus = constant_time_eq_8(a, '+'); |
| const uint8_t is_slash = constant_time_eq_8(a, '/'); |
| const uint8_t is_equals = constant_time_eq_8(a, '='); |
| |
| uint8_t ret = 0; |
| ret |= is_upper & (a - 'A'); // [0,26) |
| ret |= is_lower & (a - 'a' + 26); // [26,52) |
| ret |= is_digit & (a - '0' + 52); // [52,62) |
| ret |= is_plus & 62; |
| ret |= is_slash & 63; |
| // Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid |
| // inputs to 0xff. Note '=' is padding and handled separately by the caller. |
| const uint8_t is_valid = |
| is_upper | is_lower | is_digit | is_plus | is_slash | is_equals; |
| ret |= ~is_valid; |
| return ret; |
| } |
| |
| // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 |
| // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the |
| // number of bytes written, which will be less than three if the quad ended |
| // with padding. It returns one on success or zero on error. |
| static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, |
| const uint8_t *in) { |
| const uint8_t a = base64_ascii_to_bin(in[0]); |
| const uint8_t b = base64_ascii_to_bin(in[1]); |
| const uint8_t c = base64_ascii_to_bin(in[2]); |
| const uint8_t d = base64_ascii_to_bin(in[3]); |
| if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { |
| return 0; |
| } |
| |
| const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | |
| ((uint32_t)c) << 6 | (uint32_t)d; |
| |
| const unsigned padding_pattern = (in[0] == '=') << 3 | |
| (in[1] == '=') << 2 | |
| (in[2] == '=') << 1 | |
| (in[3] == '='); |
| |
| // In presence of padding, the lowest bits of v are unused. Canonical encoding |
| // (RFC 4648, section 3.5) requires that these bits all be set to zero. Common |
| // PEM parsers accept noncanonical base64, adding to the malleability of the |
| // format. This decoder follows OpenSSL's and Go's PEM parsers and accepts it. |
| switch (padding_pattern) { |
| case 0: |
| // The common case of no padding. |
| *out_num_bytes = 3; |
| out[0] = v >> 16; |
| out[1] = v >> 8; |
| out[2] = v; |
| break; |
| |
| case 1: // xxx= |
| *out_num_bytes = 2; |
| out[0] = v >> 16; |
| out[1] = v >> 8; |
| break; |
| |
| case 3: // xx== |
| *out_num_bytes = 1; |
| out[0] = v >> 16; |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| |
| if (ctx->error_encountered) { |
| return -1; |
| } |
| |
| size_t bytes_out = 0, i; |
| for (i = 0; i < in_len; i++) { |
| const char c = in[i]; |
| switch (c) { |
| case ' ': |
| case '\t': |
| case '\r': |
| case '\n': |
| continue; |
| } |
| |
| if (ctx->eof_seen) { |
| ctx->error_encountered = 1; |
| return -1; |
| } |
| |
| ctx->data[ctx->data_used++] = c; |
| if (ctx->data_used == 4) { |
| size_t num_bytes_resulting; |
| if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { |
| ctx->error_encountered = 1; |
| return -1; |
| } |
| |
| ctx->data_used = 0; |
| bytes_out += num_bytes_resulting; |
| out += num_bytes_resulting; |
| |
| if (num_bytes_resulting < 3) { |
| ctx->eof_seen = 1; |
| } |
| } |
| } |
| |
| if (bytes_out > INT_MAX) { |
| ctx->error_encountered = 1; |
| *out_len = 0; |
| return -1; |
| } |
| *out_len = (int)bytes_out; |
| |
| if (ctx->eof_seen) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { |
| *out_len = 0; |
| if (ctx->error_encountered || ctx->data_used != 0) { |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len) { |
| *out_len = 0; |
| |
| if (in_len % 4 != 0) { |
| return 0; |
| } |
| |
| size_t max_len; |
| if (!EVP_DecodedLength(&max_len, in_len) || |
| max_out < max_len) { |
| return 0; |
| } |
| |
| size_t i, bytes_out = 0; |
| for (i = 0; i < in_len; i += 4) { |
| size_t num_bytes_resulting; |
| |
| if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { |
| return 0; |
| } |
| |
| bytes_out += num_bytes_resulting; |
| out += num_bytes_resulting; |
| if (num_bytes_resulting != 3 && i != in_len - 4) { |
| return 0; |
| } |
| } |
| |
| *out_len = bytes_out; |
| return 1; |
| } |
| |
| int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { |
| // Trim spaces and tabs from the beginning of the input. |
| while (src_len > 0) { |
| if (src[0] != ' ' && src[0] != '\t') { |
| break; |
| } |
| |
| src++; |
| src_len--; |
| } |
| |
| // Trim newlines, spaces and tabs from the end of the line. |
| while (src_len > 0) { |
| switch (src[src_len-1]) { |
| case ' ': |
| case '\t': |
| case '\r': |
| case '\n': |
| src_len--; |
| continue; |
| } |
| |
| break; |
| } |
| |
| size_t dst_len; |
| if (!EVP_DecodedLength(&dst_len, src_len) || |
| dst_len > INT_MAX || |
| !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { |
| return -1; |
| } |
| |
| // EVP_DecodeBlock does not take padding into account, so put the |
| // NULs back in... so the caller can strip them back out. |
| while (dst_len % 3 != 0) { |
| dst[dst_len++] = '\0'; |
| } |
| assert(dst_len <= INT_MAX); |
| |
| return (int)dst_len; |
| } |