blob: e2f79d30084498d7395be7a1496f8398eaa3a1b1 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <time.h>
#include <openssl/aead.h>
#include <openssl/bio.h>
#include <openssl/bytestring.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "../../crypto/internal.h"
#include "../internal.h"
#include "async_bio.h"
#include "handshake_util.h"
#include "mock_quic_transport.h"
#include "packeted_bio.h"
#include "settings_writer.h"
#include "test_config.h"
#include "test_state.h"
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void PrintSocketError(const char *func) {
perror(func);
}
#else
static void PrintSocketError(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
static int Usage(const char *program) {
fprintf(stderr, "Usage: %s [flags...]\n", program);
return 1;
}
template<typename T>
struct Free {
void operator()(T *buf) {
free(buf);
}
};
// Connect returns a new socket connected to localhost on |port| or -1 on
// error.
static int Connect(uint16_t port) {
for (int af : { AF_INET6, AF_INET }) {
int sock = socket(af, SOCK_STREAM, 0);
if (sock == -1) {
PrintSocketError("socket");
return -1;
}
int nodelay = 1;
if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
PrintSocketError("setsockopt");
closesocket(sock);
return -1;
}
sockaddr_storage ss;
OPENSSL_memset(&ss, 0, sizeof(ss));
ss.ss_family = af;
socklen_t len = 0;
if (af == AF_INET6) {
sockaddr_in6 *sin6 = (sockaddr_in6 *) &ss;
len = sizeof(*sin6);
sin6->sin6_port = htons(port);
if (!inet_pton(AF_INET6, "::1", &sin6->sin6_addr)) {
PrintSocketError("inet_pton");
closesocket(sock);
return -1;
}
} else if (af == AF_INET) {
sockaddr_in *sin = (sockaddr_in *) &ss;
len = sizeof(*sin);
sin->sin_port = htons(port);
if (!inet_pton(AF_INET, "127.0.0.1", &sin->sin_addr)) {
PrintSocketError("inet_pton");
closesocket(sock);
return -1;
}
}
if (connect(sock, reinterpret_cast<const sockaddr*>(&ss), len) == 0) {
return sock;
}
closesocket(sock);
}
PrintSocketError("connect");
return -1;
}
class SocketCloser {
public:
explicit SocketCloser(int sock) : sock_(sock) {}
~SocketCloser() {
// Half-close and drain the socket before releasing it. This seems to be
// necessary for graceful shutdown on Windows. It will also avoid write
// failures in the test runner.
#if defined(OPENSSL_WINDOWS)
shutdown(sock_, SD_SEND);
#else
shutdown(sock_, SHUT_WR);
#endif
while (true) {
char buf[1024];
if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
break;
}
}
closesocket(sock_);
}
private:
const int sock_;
};
// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
const TestConfig *config = GetTestConfig(ssl);
TestState *test_state = GetTestState(ssl);
if (test_state->quic_transport) {
return test_state->quic_transport->ReadApplicationData(out, max_out);
}
int ret;
do {
if (config->async) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously. |SSL_read| may
// trigger a retransmit, so disconnect the write quota.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
ret = CheckIdempotentError("SSL_peek/SSL_read", ssl, [&]() -> int {
return config->peek_then_read ? SSL_peek(ssl, out, max_out)
: SSL_read(ssl, out, max_out);
});
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
// Run the exporter after each read. This is to test that the exporter fails
// during a renegotiation.
if (config->use_exporter_between_reads) {
uint8_t buf;
if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) {
fprintf(stderr, "failed to export keying material\n");
return -1;
}
}
} while (RetryAsync(ssl, ret));
if (config->peek_then_read && ret > 0) {
std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);
// SSL_peek should synchronously return the same data.
int ret2 = SSL_peek(ssl, buf.get(), ret);
if (ret2 != ret ||
OPENSSL_memcmp(buf.get(), out, ret) != 0) {
fprintf(stderr, "First and second SSL_peek did not match.\n");
return -1;
}
// SSL_read should synchronously return the same data and consume it.
ret2 = SSL_read(ssl, buf.get(), ret);
if (ret2 != ret ||
OPENSSL_memcmp(buf.get(), out, ret) != 0) {
fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
return -1;
}
}
return ret;
}
// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const void *in_, size_t in_len) {
TestState *test_state = GetTestState(ssl);
const uint8_t *in = reinterpret_cast<const uint8_t *>(in_);
if (test_state->quic_transport) {
if (!test_state->quic_transport->WriteApplicationData(in, in_len)) {
return -1;
}
return in_len;
}
int ret;
do {
ret = SSL_write(ssl, in, in_len);
if (ret > 0) {
in += ret;
in_len -= ret;
}
} while (RetryAsync(ssl, ret) || (ret > 0 && in_len > 0));
return ret;
}
// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
int ret;
do {
ret = SSL_shutdown(ssl);
} while (RetryAsync(ssl, ret));
return ret;
}
// DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous
// operations. It returns the result of the final |SSL_send_fatal_alert| call.
static int DoSendFatalAlert(SSL *ssl, uint8_t alert) {
int ret;
do {
ret = SSL_send_fatal_alert(ssl, alert);
} while (RetryAsync(ssl, ret));
return ret;
}
static uint16_t GetProtocolVersion(const SSL *ssl) {
uint16_t version = SSL_version(ssl);
if (!SSL_is_dtls(ssl)) {
return version;
}
return 0x0201 + ~version;
}
static bool CheckListContains(const char *type,
size_t (*list_func)(const char **, size_t),
const char *str) {
std::vector<const char *> list(list_func(nullptr, 0));
list_func(list.data(), list.size());
for (const char *expected : list) {
if (strcmp(expected, str) == 0) {
return true;
}
}
fprintf(stderr, "Unexpected %s: %s\n", type, str);
return false;
}
// CheckAuthProperties checks, after the initial handshake is completed or
// after a renegotiation, that authentication-related properties match |config|.
static bool CheckAuthProperties(SSL *ssl, bool is_resume,
const TestConfig *config) {
if (!config->expect_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl, &data, &len);
if (config->expect_ocsp_response.size() != len ||
OPENSSL_memcmp(config->expect_ocsp_response.data(), data, len) != 0) {
fprintf(stderr, "OCSP response mismatch\n");
return false;
}
}
if (!config->expect_signed_cert_timestamps.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
if (config->expect_signed_cert_timestamps.size() != len ||
OPENSSL_memcmp(config->expect_signed_cert_timestamps.data(), data,
len) != 0) {
fprintf(stderr, "SCT list mismatch\n");
return false;
}
}
if (config->expect_verify_result) {
int expected_verify_result = config->verify_fail ?
X509_V_ERR_APPLICATION_VERIFICATION :
X509_V_OK;
if (SSL_get_verify_result(ssl) != expected_verify_result) {
fprintf(stderr, "Wrong certificate verification result\n");
return false;
}
}
if (!config->expect_peer_cert_file.empty()) {
bssl::UniquePtr<X509> expect_leaf;
bssl::UniquePtr<STACK_OF(X509)> expect_chain;
if (!LoadCertificate(&expect_leaf, &expect_chain,
config->expect_peer_cert_file)) {
return false;
}
// For historical reasons, clients report a chain with a leaf and servers
// without.
if (!config->is_server) {
if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) {
return false;
}
X509_up_ref(expect_leaf.get()); // sk_X509_insert takes ownership.
}
bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl));
STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl);
if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) {
fprintf(stderr, "Received a different leaf certificate than expected.\n");
return false;
}
if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) {
fprintf(stderr, "Received a chain of length %zu instead of %zu.\n",
sk_X509_num(chain), sk_X509_num(expect_chain.get()));
return false;
}
for (size_t i = 0; i < sk_X509_num(chain); i++) {
if (X509_cmp(sk_X509_value(chain, i),
sk_X509_value(expect_chain.get(), i)) != 0) {
fprintf(stderr, "Chain certificate %zu did not match.\n",
i + 1);
return false;
}
}
}
if (!!SSL_SESSION_has_peer_sha256(SSL_get_session(ssl)) !=
config->expect_sha256_client_cert) {
fprintf(stderr,
"Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n",
config->expect_sha256_client_cert, is_resume);
return false;
}
if (config->expect_sha256_client_cert &&
SSL_SESSION_get0_peer_certificates(SSL_get_session(ssl)) != nullptr) {
fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n",
is_resume);
return false;
}
const uint8_t *peer_sha256;
size_t peer_sha256_len;
SSL_SESSION_get0_peer_sha256(SSL_get_session(ssl), &peer_sha256,
&peer_sha256_len);
if (SSL_SESSION_has_peer_sha256(SSL_get_session(ssl))) {
if (peer_sha256_len != 32) {
fprintf(stderr, "Peer SHA-256 hash had length %zu instead of 32\n",
peer_sha256_len);
return false;
}
} else {
if (peer_sha256_len != 0) {
fprintf(stderr, "Unexpected peer SHA-256 hash of length %zu\n",
peer_sha256_len);
return false;
}
}
return true;
}
// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume,
const TestConfig *config) {
if (!CheckAuthProperties(ssl, is_resume, config)) {
return false;
}
if (SSL_get_current_cipher(ssl) == nullptr) {
fprintf(stderr, "null cipher after handshake\n");
return false;
}
if (config->expect_version != 0 &&
SSL_version(ssl) != int{config->expect_version}) {
fprintf(stderr, "want version %04x, got %04x\n", config->expect_version,
static_cast<uint16_t>(SSL_version(ssl)));
return false;
}
bool expect_resume =
is_resume && (!config->expect_session_miss || SSL_in_early_data(ssl));
if (!!SSL_session_reused(ssl) != expect_resume) {
fprintf(stderr, "session unexpectedly was%s reused\n",
SSL_session_reused(ssl) ? "" : " not");
return false;
}
bool expect_handshake_done =
(is_resume || !config->false_start) && !SSL_in_early_data(ssl);
if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
fprintf(stderr, "handshake was%s completed\n",
GetTestState(ssl)->handshake_done ? "" : " not");
return false;
}
if (expect_handshake_done && !config->is_server) {
bool expect_new_session =
!config->expect_no_session &&
(!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
// Session tickets are sent post-handshake in TLS 1.3.
GetProtocolVersion(ssl) < TLS1_3_VERSION;
if (expect_new_session != GetTestState(ssl)->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
GetTestState(ssl)->got_new_session ? "" : " not");
return false;
}
}
if (!is_resume) {
if (config->expect_session_id && !GetTestState(ssl)->got_new_session) {
fprintf(stderr, "session was not cached on the server.\n");
return false;
}
if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) {
fprintf(stderr, "session was unexpectedly cached on the server.\n");
return false;
}
}
// early_callback_called is updated in the handshaker, so we don't see it
// here.
if (!config->handoff && config->is_server &&
!GetTestState(ssl)->early_callback_called) {
fprintf(stderr, "early callback not called\n");
return false;
}
if (!config->expect_server_name.empty()) {
const char *server_name =
SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (server_name == nullptr ||
server_name != config->expect_server_name) {
fprintf(stderr, "servername mismatch (got %s; want %s)\n",
server_name, config->expect_server_name.c_str());
return false;
}
}
if (!config->expect_next_proto.empty()) {
const uint8_t *next_proto;
unsigned next_proto_len;
SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
if (next_proto_len != config->expect_next_proto.size() ||
OPENSSL_memcmp(next_proto, config->expect_next_proto.data(),
next_proto_len) != 0) {
fprintf(stderr, "negotiated next proto mismatch\n");
return false;
}
}
// On the server, the protocol selected in the ALPN callback must be echoed
// out of |SSL_get0_alpn_selected|. On the client, it should report what the
// test expected.
const std::string &expect_alpn =
config->is_server ? config->select_alpn : config->expect_alpn;
const uint8_t *alpn_proto;
unsigned alpn_proto_len;
SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
if (alpn_proto_len != expect_alpn.size() ||
OPENSSL_memcmp(alpn_proto, expect_alpn.data(), alpn_proto_len) != 0) {
fprintf(stderr, "negotiated alpn proto mismatch\n");
return false;
}
if (SSL_has_application_settings(ssl) !=
(config->expect_peer_application_settings ? 1 : 0)) {
fprintf(stderr,
"connection %s application settings, but expected the opposite\n",
SSL_has_application_settings(ssl) ? "has" : "does not have");
return false;
}
std::string expect_settings = config->expect_peer_application_settings
? *config->expect_peer_application_settings
: "";
const uint8_t *peer_settings;
size_t peer_settings_len;
SSL_get0_peer_application_settings(ssl, &peer_settings, &peer_settings_len);
if (expect_settings !=
std::string(reinterpret_cast<const char *>(peer_settings),
peer_settings_len)) {
fprintf(stderr, "peer application settings mismatch\n");
return false;
}
if (!config->expect_quic_transport_params.empty() && expect_handshake_done) {
const uint8_t *peer_params;
size_t peer_params_len;
SSL_get_peer_quic_transport_params(ssl, &peer_params, &peer_params_len);
if (peer_params_len != config->expect_quic_transport_params.size() ||
OPENSSL_memcmp(peer_params,
config->expect_quic_transport_params.data(),
peer_params_len) != 0) {
fprintf(stderr, "QUIC transport params mismatch\n");
return false;
}
}
if (!config->expect_channel_id.empty()) {
uint8_t channel_id[64];
if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
fprintf(stderr, "no channel id negotiated\n");
return false;
}
if (config->expect_channel_id.size() != 64 ||
OPENSSL_memcmp(config->expect_channel_id.data(), channel_id, 64) !=
0) {
fprintf(stderr, "channel id mismatch\n");
return false;
}
}
if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) {
fprintf(stderr, "No EMS for connection when expected\n");
return false;
}
if (config->expect_secure_renegotiation &&
!SSL_get_secure_renegotiation_support(ssl)) {
fprintf(stderr, "No secure renegotiation for connection when expected\n");
return false;
}
if (config->expect_no_secure_renegotiation &&
SSL_get_secure_renegotiation_support(ssl)) {
fprintf(stderr,
"Secure renegotiation unexpectedly negotiated for connection\n");
return false;
}
if (config->expect_peer_signature_algorithm != 0 &&
config->expect_peer_signature_algorithm !=
SSL_get_peer_signature_algorithm(ssl)) {
fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n",
SSL_get_peer_signature_algorithm(ssl),
config->expect_peer_signature_algorithm);
return false;
}
if (config->expect_curve_id != 0) {
uint16_t curve_id = SSL_get_curve_id(ssl);
if (config->expect_curve_id != curve_id) {
fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id,
config->expect_curve_id);
return false;
}
}
uint16_t cipher_id = SSL_CIPHER_get_protocol_id(SSL_get_current_cipher(ssl));
if (config->expect_cipher_aes != 0 && EVP_has_aes_hardware() &&
config->expect_cipher_aes != cipher_id) {
fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n",
cipher_id, config->expect_cipher_aes);
return false;
}
if (config->expect_cipher_no_aes != 0 && !EVP_has_aes_hardware() &&
config->expect_cipher_no_aes != cipher_id) {
fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n",
cipher_id, config->expect_cipher_no_aes);
return false;
}
if (config->expect_cipher != 0 &&
config->expect_cipher != cipher_id) {
fprintf(stderr, "Cipher ID was %04x, wanted %04x\n", cipher_id,
config->expect_cipher);
return false;
}
// The early data status is only applicable after the handshake is confirmed.
if (!SSL_in_early_data(ssl)) {
if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) ||
(config->expect_reject_early_data && SSL_early_data_accepted(ssl))) {
fprintf(stderr,
"Early data was%s accepted, but we expected the opposite\n",
SSL_early_data_accepted(ssl) ? "" : " not");
return false;
}
const char *early_data_reason =
SSL_early_data_reason_string(SSL_get_early_data_reason(ssl));
if (!config->expect_early_data_reason.empty() &&
config->expect_early_data_reason != early_data_reason) {
fprintf(stderr, "Early data reason was \"%s\", expected \"%s\"\n",
early_data_reason, config->expect_early_data_reason.c_str());
return false;
}
}
if (!config->psk.empty()) {
if (SSL_get_peer_cert_chain(ssl) != nullptr) {
fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
return false;
}
} else if (!config->is_server || config->require_any_client_certificate) {
if (SSL_get_peer_cert_chain(ssl) == nullptr) {
fprintf(stderr, "Received no peer certificate but expected one.\n");
return false;
}
}
if (is_resume && config->expect_ticket_age_skew != 0 &&
SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) {
fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n",
SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew);
return false;
}
if (config->expect_delegated_credential_used !=
!!SSL_delegated_credential_used(ssl)) {
fprintf(stderr,
"Got %s delegated credential usage, but wanted opposite. \n",
SSL_delegated_credential_used(ssl) ? "" : "no");
return false;
}
if ((config->expect_hrr && !SSL_used_hello_retry_request(ssl)) ||
(config->expect_no_hrr && SSL_used_hello_retry_request(ssl))) {
fprintf(stderr, "Got %sHRR, but wanted opposite.\n",
SSL_used_hello_retry_request(ssl) ? "" : "no ");
return false;
}
if (config->expect_ech_accept != !!SSL_ech_accepted(ssl)) {
fprintf(stderr, "ECH was %saccepted, but wanted opposite.\n",
SSL_ech_accepted(ssl) ? "" : "not ");
return false;
}
if (config->expect_key_usage_invalid != !!SSL_was_key_usage_invalid(ssl)) {
fprintf(stderr, "X.509 key usage was %svalid, but wanted opposite.\n",
SSL_was_key_usage_invalid(ssl) ? "in" : "");
return false;
}
// Check all the selected parameters are covered by the string APIs.
if (!CheckListContains("version", SSL_get_all_version_names,
SSL_get_version(ssl)) ||
!CheckListContains(
"cipher", SSL_get_all_standard_cipher_names,
SSL_CIPHER_standard_name(SSL_get_current_cipher(ssl))) ||
!CheckListContains("OpenSSL cipher name", SSL_get_all_cipher_names,
SSL_CIPHER_get_name(SSL_get_current_cipher(ssl))) ||
(SSL_get_group_id(ssl) != 0 &&
!CheckListContains("group", SSL_get_all_group_names,
SSL_get_group_name(SSL_get_group_id(ssl)))) ||
(SSL_get_peer_signature_algorithm(ssl) != 0 &&
!CheckListContains(
"sigalg", SSL_get_all_signature_algorithm_names,
SSL_get_signature_algorithm_name(
SSL_get_peer_signature_algorithm(ssl), /*include_curve=*/0))) ||
(SSL_get_peer_signature_algorithm(ssl) != 0 &&
!CheckListContains(
"sigalg with curve", SSL_get_all_signature_algorithm_names,
SSL_get_signature_algorithm_name(
SSL_get_peer_signature_algorithm(ssl), /*include_curve=*/1)))) {
return false;
}
// Test that handshake hints correctly skipped the expected operations.
if (config->handshake_hints && !config->allow_hint_mismatch) {
const TestState *state = GetTestState(ssl);
// If the private key operation is performed in the first roundtrip, a hint
// match should have skipped it. This is ECDHE-based cipher suites in TLS
// 1.2 and non-HRR handshakes in TLS 1.3.
bool private_key_allowed;
if (SSL_version(ssl) == TLS1_3_VERSION) {
private_key_allowed = SSL_used_hello_retry_request(ssl);
} else {
private_key_allowed =
SSL_CIPHER_get_kx_nid(SSL_get_current_cipher(ssl)) == NID_kx_rsa;
}
if (!private_key_allowed && state->used_private_key) {
fprintf(
stderr,
"Performed private key operation, but hint should have skipped it\n");
return false;
}
if (state->ticket_decrypt_done) {
fprintf(stderr,
"Performed ticket decryption, but hint should have skipped it\n");
return false;
}
// TODO(davidben): Decide what we want to do with TLS 1.2 stateful
// resumption.
}
return true;
}
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
bssl::UniquePtr<SSL> *ssl_uniqueptr,
const TestConfig *config, bool is_resume, bool is_retry,
SettingsWriter *writer);
// DoConnection tests an SSL connection against the peer. On success, it returns
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoConnection(bssl::UniquePtr<SSL_SESSION> *out_session,
SSL_CTX *ssl_ctx, const TestConfig *config,
const TestConfig *retry_config, bool is_resume,
SSL_SESSION *session, SettingsWriter *writer) {
bssl::UniquePtr<SSL> ssl = config->NewSSL(
ssl_ctx, session, std::unique_ptr<TestState>(new TestState));
if (!ssl) {
return false;
}
if (config->is_server) {
SSL_set_accept_state(ssl.get());
} else {
SSL_set_connect_state(ssl.get());
}
if (config->handshake_hints) {
#if defined(HANDSHAKER_SUPPORTED)
GetTestState(ssl.get())->get_handshake_hints_cb =
[&](const SSL_CLIENT_HELLO *client_hello) {
return GetHandshakeHint(ssl.get(), writer, is_resume, client_hello);
};
#else
fprintf(stderr, "The external handshaker can only be used on Linux\n");
return false;
#endif
}
int sock = Connect(config->port);
if (sock == -1) {
return false;
}
SocketCloser closer(sock);
bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
if (!bio) {
return false;
}
if (config->is_dtls) {
bssl::UniquePtr<BIO> packeted = PacketedBioCreate(GetClock());
if (!packeted) {
return false;
}
GetTestState(ssl.get())->packeted_bio = packeted.get();
BIO_push(packeted.get(), bio.release());
bio = std::move(packeted);
}
if (config->async && !config->is_quic) {
// Note async tests only affect callbacks in QUIC. The IO path does not
// behave differently when synchronous or asynchronous our QUIC APIs.
bssl::UniquePtr<BIO> async_scoped =
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
if (!async_scoped) {
return false;
}
BIO_push(async_scoped.get(), bio.release());
GetTestState(ssl.get())->async_bio = async_scoped.get();
bio = std::move(async_scoped);
}
if (config->is_quic) {
GetTestState(ssl.get())->quic_transport.reset(
new MockQuicTransport(std::move(bio), ssl.get()));
} else {
SSL_set_bio(ssl.get(), bio.get(), bio.get());
bio.release(); // SSL_set_bio takes ownership.
}
bool ret = DoExchange(out_session, &ssl, config, is_resume, false, writer);
if (!config->is_server && is_resume && config->expect_reject_early_data) {
// We must have failed due to an early data rejection.
if (ret) {
fprintf(stderr, "0-RTT exchange unexpected succeeded.\n");
return false;
}
if (SSL_get_error(ssl.get(), -1) != SSL_ERROR_EARLY_DATA_REJECTED) {
fprintf(stderr,
"SSL_get_error did not signal SSL_ERROR_EARLY_DATA_REJECTED.\n");
return false;
}
// Before reseting, early state should still be available.
if (!SSL_in_early_data(ssl.get()) ||
!CheckHandshakeProperties(ssl.get(), is_resume, config)) {
fprintf(stderr, "SSL_in_early_data returned false before reset.\n");
return false;
}
// Client pre- and post-0-RTT reject states are considered logically
// different connections with different test expections. Check that the test
// did not mistakenly configure reason expectations on the wrong one.
if (!config->expect_early_data_reason.empty()) {
fprintf(stderr,
"Test error: client reject -expect-early-data-reason flags "
"should be configured with -on-retry, not -on-resume.\n");
return false;
}
// Reset the connection and try again at 1-RTT.
SSL_reset_early_data_reject(ssl.get());
GetTestState(ssl.get())->cert_verified = false;
// After reseting, the socket should report it is no longer in an early data
// state.
if (SSL_in_early_data(ssl.get())) {
fprintf(stderr, "SSL_in_early_data returned true after reset.\n");
return false;
}
if (!SetTestConfig(ssl.get(), retry_config)) {
return false;
}
assert(!config->handoff);
config = retry_config;
ret = DoExchange(out_session, &ssl, retry_config, is_resume, true, writer);
}
// An ECH rejection appears as a failed connection. Note |ssl| may use a
// different config on ECH rejection.
if (config->expect_no_ech_retry_configs ||
!config->expect_ech_retry_configs.empty()) {
bssl::Span<const uint8_t> expected =
config->expect_no_ech_retry_configs
? bssl::Span<const uint8_t>()
: bssl::MakeConstSpan(reinterpret_cast<const uint8_t *>(
config->expect_ech_retry_configs.data()),
config->expect_ech_retry_configs.size());
if (ret) {
fprintf(stderr, "Expected ECH rejection, but connection succeeded.\n");
return false;
}
uint32_t err = ERR_peek_error();
if (SSL_get_error(ssl.get(), -1) != SSL_ERROR_SSL ||
ERR_GET_LIB(err) != ERR_LIB_SSL ||
ERR_GET_REASON(err) != SSL_R_ECH_REJECTED) {
fprintf(stderr, "Expected ECH rejection, but connection succeeded.\n");
return false;
}
const uint8_t *retry_configs;
size_t retry_configs_len;
SSL_get0_ech_retry_configs(ssl.get(), &retry_configs, &retry_configs_len);
if (bssl::MakeConstSpan(retry_configs, retry_configs_len) != expected) {
fprintf(stderr, "ECH retry configs did not match expectations.\n");
// Clear the error queue. Otherwise |SSL_R_ECH_REJECTED| will be printed
// to stderr and the test framework will think the test had the expected
// expectations.
ERR_clear_error();
return false;
}
}
if (!ret) {
// Print the |SSL_get_error| code. Otherwise, some failures are silent and
// hard to debug.
int ssl_err = SSL_get_error(ssl.get(), -1);
if (ssl_err != SSL_ERROR_NONE) {
fprintf(stderr, "SSL error: %s\n", SSL_error_description(ssl_err));
}
return false;
}
if (!GetTestState(ssl.get())->msg_callback_ok) {
return false;
}
if (!config->expect_msg_callback.empty() &&
GetTestState(ssl.get())->msg_callback_text !=
config->expect_msg_callback) {
fprintf(stderr, "Bad message callback trace. Wanted:\n%s\nGot:\n%s\n",
config->expect_msg_callback.c_str(),
GetTestState(ssl.get())->msg_callback_text.c_str());
return false;
}
return true;
}
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
bssl::UniquePtr<SSL> *ssl_uniqueptr,
const TestConfig *config, bool is_resume, bool is_retry,
SettingsWriter *writer) {
int ret;
SSL *ssl = ssl_uniqueptr->get();
SSL_CTX *session_ctx = SSL_get_SSL_CTX(ssl);
TestState *test_state = GetTestState(ssl);
if (!config->implicit_handshake) {
if (config->handoff) {
#if defined(HANDSHAKER_SUPPORTED)
if (!DoSplitHandshake(ssl_uniqueptr, writer, is_resume)) {
return false;
}
ssl = ssl_uniqueptr->get();
test_state = GetTestState(ssl);
#else
fprintf(stderr, "The external handshaker can only be used on Linux\n");
return false;
#endif
}
do {
ret = CheckIdempotentError("SSL_do_handshake", ssl, [&]() -> int {
return SSL_do_handshake(ssl);
});
} while (RetryAsync(ssl, ret));
if (config->forbid_renegotiation_after_handshake) {
SSL_set_renegotiate_mode(ssl, ssl_renegotiate_never);
}
if (ret != 1 || !CheckHandshakeProperties(ssl, is_resume, config)) {
return false;
}
CopySessions(session_ctx, SSL_get_SSL_CTX(ssl));
if (is_resume && !is_retry && !config->is_server &&
config->expect_no_offer_early_data && SSL_in_early_data(ssl)) {
fprintf(stderr, "Client unexpectedly offered early data.\n");
return false;
}
if (config->handshake_twice) {
do {
ret = SSL_do_handshake(ssl);
} while (RetryAsync(ssl, ret));
if (ret != 1) {
return false;
}
}
// Skip the |config->async| logic as this should be a no-op.
if (config->no_op_extra_handshake &&
SSL_do_handshake(ssl) != 1) {
fprintf(stderr, "Extra SSL_do_handshake was not a no-op.\n");
return false;
}
if (config->early_write_after_message != 0) {
if (!SSL_in_early_data(ssl) || config->is_server) {
fprintf(stderr,
"-early-write-after-message only works for 0-RTT connections "
"on servers.\n");
return false;
}
if (!config->shim_writes_first || !config->async) {
fprintf(stderr,
"-early-write-after-message requires -shim-writes-first and "
"-async.\n");
return false;
}
// Run the handshake until the specified message. Note that, if a
// handshake record contains multiple messages, |SSL_do_handshake| usually
// processes both atomically. The test must ensure there is a record
// boundary after the desired message. Checking |last_message_received|
// confirms this.
do {
ret = SSL_do_handshake(ssl);
} while (test_state->last_message_received !=
config->early_write_after_message &&
RetryAsync(ssl, ret));
if (ret == 1) {
fprintf(stderr, "Handshake unexpectedly succeeded.\n");
return false;
}
if (test_state->last_message_received !=
config->early_write_after_message) {
// The handshake failed before we saw the target message. The generic
// error-handling logic in the caller will print the error.
return false;
}
}
// Reset the state to assert later that the callback isn't called in
// renegotations.
test_state->got_new_session = false;
}
if (config->export_keying_material > 0) {
std::vector<uint8_t> result(
static_cast<size_t>(config->export_keying_material));
if (!SSL_export_keying_material(
ssl, result.data(), result.size(), config->export_label.data(),
config->export_label.size(),
reinterpret_cast<const uint8_t *>(config->export_context.data()),
config->export_context.size(), config->use_export_context)) {
fprintf(stderr, "failed to export keying material\n");
return false;
}
if (WriteAll(ssl, result.data(), result.size()) < 0) {
return false;
}
}
if (config->export_traffic_secrets) {
bssl::Span<const uint8_t> read_secret, write_secret;
if (!SSL_get_traffic_secrets(ssl, &read_secret, &write_secret)) {
fprintf(stderr, "failed to export traffic secrets\n");
return false;
}
assert(read_secret.size() <= 0xffff);
assert(write_secret.size() == read_secret.size());
const uint16_t secret_len = read_secret.size();
if (WriteAll(ssl, &secret_len, sizeof(secret_len)) < 0 ||
WriteAll(ssl, read_secret.data(), read_secret.size()) < 0 ||
WriteAll(ssl, write_secret.data(), write_secret.size()) < 0) {
return false;
}
}
if (config->tls_unique) {
uint8_t tls_unique[16];
size_t tls_unique_len;
if (!SSL_get_tls_unique(ssl, tls_unique, &tls_unique_len,
sizeof(tls_unique))) {
fprintf(stderr, "failed to get tls-unique\n");
return false;
}
if (tls_unique_len != 12) {
fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
static_cast<unsigned>(tls_unique_len));
return false;
}
if (WriteAll(ssl, tls_unique, tls_unique_len) < 0) {
return false;
}
}
if (config->send_alert) {
if (DoSendFatalAlert(ssl, SSL_AD_DECOMPRESSION_FAILURE) < 0) {
return false;
}
return true;
}
if (config->write_different_record_sizes) {
if (config->is_dtls) {
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
return false;
}
// This mode writes a number of different record sizes in an attempt to
// trip up the CBC record splitting code.
static const size_t kBufLen = 32769;
std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
OPENSSL_memset(buf.get(), 0x42, kBufLen);
static const size_t kRecordSizes[] = {
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
const size_t len = kRecordSizes[i];
if (len > kBufLen) {
fprintf(stderr, "Bad kRecordSizes value.\n");
return false;
}
if (WriteAll(ssl, buf.get(), len) < 0) {
return false;
}
}
} else {
static const char kInitialWrite[] = "hello";
bool pending_initial_write = false;
if (config->read_with_unfinished_write) {
if (!config->async) {
fprintf(stderr, "-read-with-unfinished-write requires -async.\n");
return false;
}
if (config->is_quic) {
fprintf(stderr,
"-read-with-unfinished-write is incompatible with QUIC.\n");
return false;
}
// Let only one byte of the record through.
AsyncBioAllowWrite(test_state->async_bio, 1);
int write_ret =
SSL_write(ssl, kInitialWrite, strlen(kInitialWrite));
if (SSL_get_error(ssl, write_ret) != SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "Failed to leave unfinished write.\n");
return false;
}
pending_initial_write = true;
} else if (config->shim_writes_first) {
if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) {
return false;
}
}
if (!config->shim_shuts_down) {
for (;;) {
// Read only 512 bytes at a time in TLS to ensure records may be
// returned in multiple reads.
size_t read_size = config->is_dtls ? 16384 : 512;
if (config->read_size > 0) {
read_size = config->read_size;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[read_size]);
int n = DoRead(ssl, buf.get(), read_size);
int err = SSL_get_error(ssl, n);
if (err == SSL_ERROR_ZERO_RETURN ||
(n == 0 && err == SSL_ERROR_SYSCALL)) {
if (n != 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
// Stop on either clean or unclean shutdown.
break;
} else if (err != SSL_ERROR_NONE) {
if (n > 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
return false;
}
// Successfully read data.
if (n <= 0) {
fprintf(stderr, "Invalid SSL_get_error output\n");
return false;
}
if (!config->is_server && is_resume && !is_retry &&
config->expect_reject_early_data) {
fprintf(stderr,
"Unexpectedly received data instead of 0-RTT reject.\n");
return false;
}
// After a successful read, with or without False Start, the handshake
// must be complete unless we are doing early data.
if (!test_state->handshake_done &&
!SSL_early_data_accepted(ssl)) {
fprintf(stderr, "handshake was not completed after SSL_read\n");
return false;
}
// Clear the initial write, if unfinished.
if (pending_initial_write) {
if (WriteAll(ssl, kInitialWrite, strlen(kInitialWrite)) < 0) {
return false;
}
pending_initial_write = false;
}
if (config->key_update &&
!SSL_key_update(ssl, SSL_KEY_UPDATE_NOT_REQUESTED)) {
fprintf(stderr, "SSL_key_update failed.\n");
return false;
}
for (int i = 0; i < n; i++) {
buf[i] ^= 0xff;
}
if (WriteAll(ssl, buf.get(), n) < 0) {
return false;
}
}
}
}
if (!config->is_server && !config->false_start &&
!config->implicit_handshake &&
// Session tickets are sent post-handshake in TLS 1.3.
GetProtocolVersion(ssl) < TLS1_3_VERSION &&
test_state->got_new_session) {
fprintf(stderr, "new session was established after the handshake\n");
return false;
}
if (GetProtocolVersion(ssl) >= TLS1_3_VERSION && !config->is_server) {
bool expect_new_session =
!config->expect_no_session && !config->shim_shuts_down;
if (expect_new_session != test_state->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
test_state->got_new_session ? "" : " not");
return false;
}
if (expect_new_session) {
bool got_early_data =
test_state->new_session->ticket_max_early_data != 0;
if (config->expect_ticket_supports_early_data != got_early_data) {
fprintf(stderr,
"new session did%s support early data, but we expected the "
"opposite\n",
got_early_data ? "" : " not");
return false;
}
}
}
if (out_session) {
*out_session = std::move(test_state->new_session);
}
ret = DoShutdown(ssl);
if (config->shim_shuts_down && config->check_close_notify) {
// We initiate shutdown, so |SSL_shutdown| will return in two stages. First
// it returns zero when our close_notify is sent, then one when the peer's
// is received.
if (ret != 0) {
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
return false;
}
ret = DoShutdown(ssl);
}
if (ret != 1) {
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
return false;
}
if (SSL_total_renegotiations(ssl) > 0) {
if (!SSL_get_session(ssl)->not_resumable) {
fprintf(stderr,
"Renegotiations should never produce resumable sessions.\n");
return false;
}
if (SSL_session_reused(ssl)) {
fprintf(stderr, "Renegotiations should never resume sessions.\n");
return false;
}
// Re-check authentication properties after a renegotiation. The reported
// values should remain unchanged even if the server sent different SCT
// lists.
if (!CheckAuthProperties(ssl, is_resume, config)) {
return false;
}
}
if (SSL_total_renegotiations(ssl) != config->expect_total_renegotiations) {
fprintf(stderr, "Expected %d renegotiations, got %d\n",
config->expect_total_renegotiations, SSL_total_renegotiations(ssl));
return false;
}
if (config->renegotiate_explicit &&
SSL_total_renegotiations(ssl) !=
test_state->explicit_renegotiates) {
fprintf(stderr, "Performed %d renegotiations, but triggered %d of them\n",
SSL_total_renegotiations(ssl),
test_state->explicit_renegotiates);
return false;
}
return true;
}
class StderrDelimiter {
public:
~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};
int main(int argc, char **argv) {
// To distinguish ASan's output from ours, add a trailing message to stderr.
// Anything following this line will be considered an error.
StderrDelimiter delimiter;
#if defined(OPENSSL_WINDOWS)
// Initialize Winsock.
WORD wsa_version = MAKEWORD(2, 2);
WSADATA wsa_data;
int wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#else
signal(SIGPIPE, SIG_IGN);
#endif
CRYPTO_library_init();
TestConfig initial_config, resume_config, retry_config;
if (!ParseConfig(argc - 1, argv + 1, /*is_shim=*/true, &initial_config,
&resume_config, &retry_config)) {
return Usage(argv[0]);
}
if (initial_config.is_handshaker_supported) {
#if defined(HANDSHAKER_SUPPORTED)
printf("Yes\n");
#else
printf("No\n");
#endif
return 0;
}
if (initial_config.wait_for_debugger) {
#if defined(OPENSSL_WINDOWS)
fprintf(stderr, "-wait-for-debugger is not supported on Windows.\n");
return 1;
#else
// The debugger will resume the process.
raise(SIGSTOP);
#endif
}
bssl::UniquePtr<SSL_CTX> ssl_ctx;
bssl::UniquePtr<SSL_SESSION> session;
for (int i = 0; i < initial_config.resume_count + 1; i++) {
bool is_resume = i > 0;
TestConfig *config = is_resume ? &resume_config : &initial_config;
ssl_ctx = config->SetupCtx(ssl_ctx.get());
if (!ssl_ctx) {
ERR_print_errors_fp(stderr);
return 1;
}
if (is_resume && !initial_config.is_server && !session) {
fprintf(stderr, "No session to offer.\n");
return 1;
}
bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
SettingsWriter writer;
if (!writer.Init(i, config, offer_session.get())) {
fprintf(stderr, "Error writing settings.\n");
return 1;
}
bool ok = DoConnection(&session, ssl_ctx.get(), config, &retry_config,
is_resume, offer_session.get(), &writer);
if (!writer.Commit()) {
fprintf(stderr, "Error writing settings.\n");
return 1;
}
if (!ok) {
fprintf(stderr, "Connection %d failed.\n", i + 1);
ERR_print_errors_fp(stderr);
return 1;
}
if (config->resumption_delay != 0) {
AdvanceClock(config->resumption_delay);
}
}
return 0;
}