blob: 094d85a59a1487798be40b7614a711572f036091 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <utility>
#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/x509.h>
#include "../crypto/internal.h"
#include "internal.h"
namespace bssl {
CERT *ssl_cert_new(const SSL_X509_METHOD *x509_method) {
CERT *ret = (CERT *)OPENSSL_malloc(sizeof(CERT));
if (ret == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memset(ret, 0, sizeof(CERT));
ret->x509_method = x509_method;
return ret;
}
static CRYPTO_BUFFER *buffer_up_ref(CRYPTO_BUFFER *buffer) {
CRYPTO_BUFFER_up_ref(buffer);
return buffer;
}
CERT *ssl_cert_dup(CERT *cert) {
CERT *ret = (CERT *)OPENSSL_malloc(sizeof(CERT));
if (ret == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memset(ret, 0, sizeof(CERT));
ret->chain = sk_CRYPTO_BUFFER_deep_copy(cert->chain, buffer_up_ref,
CRYPTO_BUFFER_free);
if (cert->privatekey != NULL) {
EVP_PKEY_up_ref(cert->privatekey);
ret->privatekey = cert->privatekey;
}
ret->key_method = cert->key_method;
ret->x509_method = cert->x509_method;
if (cert->sigalgs != NULL) {
ret->sigalgs = (uint16_t *)BUF_memdup(
cert->sigalgs, cert->num_sigalgs * sizeof(cert->sigalgs[0]));
if (ret->sigalgs == NULL) {
goto err;
}
}
ret->num_sigalgs = cert->num_sigalgs;
ret->cert_cb = cert->cert_cb;
ret->cert_cb_arg = cert->cert_cb_arg;
ret->x509_method->cert_dup(ret, cert);
if (cert->signed_cert_timestamp_list != NULL) {
CRYPTO_BUFFER_up_ref(cert->signed_cert_timestamp_list);
ret->signed_cert_timestamp_list = cert->signed_cert_timestamp_list;
}
if (cert->ocsp_response != NULL) {
CRYPTO_BUFFER_up_ref(cert->ocsp_response);
ret->ocsp_response = cert->ocsp_response;
}
ret->sid_ctx_length = cert->sid_ctx_length;
OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx));
ret->enable_early_data = cert->enable_early_data;
return ret;
err:
ssl_cert_free(ret);
return NULL;
}
// Free up and clear all certificates and chains
void ssl_cert_clear_certs(CERT *cert) {
if (cert == NULL) {
return;
}
cert->x509_method->cert_clear(cert);
sk_CRYPTO_BUFFER_pop_free(cert->chain, CRYPTO_BUFFER_free);
cert->chain = NULL;
EVP_PKEY_free(cert->privatekey);
cert->privatekey = NULL;
cert->key_method = NULL;
}
void ssl_cert_free(CERT *cert) {
if (cert == NULL) {
return;
}
ssl_cert_clear_certs(cert);
cert->x509_method->cert_free(cert);
OPENSSL_free(cert->sigalgs);
CRYPTO_BUFFER_free(cert->signed_cert_timestamp_list);
CRYPTO_BUFFER_free(cert->ocsp_response);
OPENSSL_free(cert);
}
static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg),
void *arg) {
cert->cert_cb = cb;
cert->cert_cb_arg = arg;
}
enum leaf_cert_and_privkey_result_t {
leaf_cert_and_privkey_error,
leaf_cert_and_privkey_ok,
leaf_cert_and_privkey_mismatch,
};
// check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer|
// and the private key in |privkey| are suitable and coherent. It returns
// |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is
// found. If the certificate and private key are valid, but incoherent, it
// returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns
// |leaf_cert_and_privkey_ok|.
static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey(
CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) {
CBS cert_cbs;
CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs);
UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
if (!pubkey) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return leaf_cert_and_privkey_error;
}
if (!ssl_is_key_type_supported(pubkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return leaf_cert_and_privkey_error;
}
// An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA
// certificates, so sanity-check the key usage extension.
if (pubkey->type == EVP_PKEY_EC &&
!ssl_cert_check_digital_signature_key_usage(&cert_cbs)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return leaf_cert_and_privkey_error;
}
if (privkey != NULL &&
// Sanity-check that the private key and the certificate match.
!ssl_compare_public_and_private_key(pubkey.get(), privkey)) {
ERR_clear_error();
return leaf_cert_and_privkey_mismatch;
}
return leaf_cert_and_privkey_ok;
}
static int cert_set_chain_and_key(
CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs,
EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) {
if (num_certs == 0 ||
(privkey == NULL && privkey_method == NULL)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (privkey != NULL && privkey_method != NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
return 0;
}
switch (check_leaf_cert_and_privkey(certs[0], privkey)) {
case leaf_cert_and_privkey_error:
return 0;
case leaf_cert_and_privkey_mismatch:
OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
return 0;
case leaf_cert_and_privkey_ok:
break;
}
STACK_OF(CRYPTO_BUFFER) *certs_sk = sk_CRYPTO_BUFFER_new_null();
if (certs_sk == NULL) {
return 0;
}
for (size_t i = 0; i < num_certs; i++) {
if (!sk_CRYPTO_BUFFER_push(certs_sk, certs[i])) {
sk_CRYPTO_BUFFER_pop_free(certs_sk, CRYPTO_BUFFER_free);
return 0;
}
CRYPTO_BUFFER_up_ref(certs[i]);
}
EVP_PKEY_free(cert->privatekey);
cert->privatekey = privkey;
if (privkey != NULL) {
EVP_PKEY_up_ref(privkey);
}
cert->key_method = privkey_method;
sk_CRYPTO_BUFFER_pop_free(cert->chain, CRYPTO_BUFFER_free);
cert->chain = certs_sk;
return 1;
}
int ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer) {
switch (check_leaf_cert_and_privkey(buffer.get(), cert->privatekey)) {
case leaf_cert_and_privkey_error:
return 0;
case leaf_cert_and_privkey_mismatch:
// don't fail for a cert/key mismatch, just free current private key
// (when switching to a different cert & key, first this function should
// be used, then |ssl_set_pkey|.
EVP_PKEY_free(cert->privatekey);
cert->privatekey = NULL;
break;
case leaf_cert_and_privkey_ok:
break;
}
cert->x509_method->cert_flush_cached_leaf(cert);
if (cert->chain != NULL) {
CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert->chain, 0));
sk_CRYPTO_BUFFER_set(cert->chain, 0, buffer.release());
return 1;
}
cert->chain = sk_CRYPTO_BUFFER_new_null();
if (cert->chain == NULL) {
return 0;
}
if (!PushToStack(cert->chain, std::move(buffer))) {
sk_CRYPTO_BUFFER_free(cert->chain);
cert->chain = NULL;
return 0;
}
return 1;
}
int ssl_has_certificate(const SSL *ssl) {
return ssl->cert->chain != NULL &&
sk_CRYPTO_BUFFER_value(ssl->cert->chain, 0) != NULL &&
ssl_has_private_key(ssl);
}
bool ssl_parse_cert_chain(uint8_t *out_alert,
UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
UniquePtr<EVP_PKEY> *out_pubkey,
uint8_t *out_leaf_sha256, CBS *cbs,
CRYPTO_BUFFER_POOL *pool) {
out_chain->reset();
out_pubkey->reset();
CBS certificate_list;
if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return false;
}
if (CBS_len(&certificate_list) == 0) {
return true;
}
UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null());
if (!chain) {
*out_alert = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return false;
}
UniquePtr<EVP_PKEY> pubkey;
while (CBS_len(&certificate_list) > 0) {
CBS certificate;
if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) ||
CBS_len(&certificate) == 0) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
return false;
}
if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) {
pubkey = ssl_cert_parse_pubkey(&certificate);
if (!pubkey) {
*out_alert = SSL_AD_DECODE_ERROR;
return false;
}
// Retain the hash of the leaf certificate if requested.
if (out_leaf_sha256 != NULL) {
SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256);
}
}
UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new_from_CBS(&certificate, pool));
if (!buf ||
!PushToStack(chain.get(), std::move(buf))) {
*out_alert = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return false;
}
}
*out_chain = std::move(chain);
*out_pubkey = std::move(pubkey);
return true;
}
int ssl_add_cert_chain(SSL *ssl, CBB *cbb) {
if (!ssl_has_certificate(ssl)) {
return CBB_add_u24(cbb, 0);
}
CBB certs;
if (!CBB_add_u24_length_prefixed(cbb, &certs)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
STACK_OF(CRYPTO_BUFFER) *chain = ssl->cert->chain;
for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) {
CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i);
CBB child;
if (!CBB_add_u24_length_prefixed(&certs, &child) ||
!CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer),
CRYPTO_BUFFER_len(buffer)) ||
!CBB_flush(&certs)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
return CBB_flush(cbb);
}
// ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and
// positions |*out_tbs_cert| to cover the TBSCertificate, starting at the
// subjectPublicKeyInfo.
static int ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) {
/* From RFC 5280, section 4.1
* Certificate ::= SEQUENCE {
* tbsCertificate TBSCertificate,
* signatureAlgorithm AlgorithmIdentifier,
* signatureValue BIT STRING }
* TBSCertificate ::= SEQUENCE {
* version [0] EXPLICIT Version DEFAULT v1,
* serialNumber CertificateSerialNumber,
* signature AlgorithmIdentifier,
* issuer Name,
* validity Validity,
* subject Name,
* subjectPublicKeyInfo SubjectPublicKeyInfo,
* ... } */
CBS buf = *in;
CBS toplevel;
if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) ||
CBS_len(&buf) != 0 ||
!CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) ||
// version
!CBS_get_optional_asn1(
out_tbs_cert, NULL, NULL,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
// serialNumber
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) ||
// signature algorithm
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
// issuer
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
// validity
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
// subject
!CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) {
return 0;
}
return 1;
}
UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in) {
CBS buf = *in, tbs_cert;
if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
return nullptr;
}
return UniquePtr<EVP_PKEY>(EVP_parse_public_key(&tbs_cert));
}
int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
const EVP_PKEY *privkey) {
if (EVP_PKEY_is_opaque(privkey)) {
// We cannot check an opaque private key and have to trust that it
// matches.
return 1;
}
int ret = 0;
switch (EVP_PKEY_cmp(pubkey, privkey)) {
case 1:
ret = 1;
break;
case 0:
OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH);
break;
case -1:
OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH);
break;
case -2:
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
break;
default:
assert(0);
break;
}
return ret;
}
int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) {
if (privkey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return 0;
}
if (cert->chain == NULL ||
sk_CRYPTO_BUFFER_value(cert->chain, 0) == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
CBS cert_cbs;
CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(cert->chain, 0), &cert_cbs);
UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
if (!pubkey) {
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
return 0;
}
return ssl_compare_public_and_private_key(pubkey.get(), privkey);
}
int ssl_cert_check_digital_signature_key_usage(const CBS *in) {
CBS buf = *in;
CBS tbs_cert, outer_extensions;
int has_extensions;
if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) ||
// subjectPublicKeyInfo
!CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
// issuerUniqueID
!CBS_get_optional_asn1(
&tbs_cert, NULL, NULL,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1) ||
// subjectUniqueID
!CBS_get_optional_asn1(
&tbs_cert, NULL, NULL,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 2) ||
!CBS_get_optional_asn1(
&tbs_cert, &outer_extensions, &has_extensions,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) {
goto parse_err;
}
if (!has_extensions) {
return 1;
}
CBS extensions;
if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) {
goto parse_err;
}
while (CBS_len(&extensions) > 0) {
CBS extension, oid, contents;
if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
(CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) &&
!CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) ||
!CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) ||
CBS_len(&extension) != 0) {
goto parse_err;
}
static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f};
if (CBS_len(&oid) != sizeof(kKeyUsageOID) ||
OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) !=
0) {
continue;
}
CBS bit_string;
if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) ||
CBS_len(&contents) != 0) {
goto parse_err;
}
// This is the KeyUsage extension. See
// https://tools.ietf.org/html/rfc5280#section-4.2.1.3
if (!CBS_is_valid_asn1_bitstring(&bit_string)) {
goto parse_err;
}
if (!CBS_asn1_bitstring_has_bit(&bit_string, 0)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
return 0;
}
return 1;
}
// No KeyUsage extension found.
return 1;
parse_err:
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
return 0;
}
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
uint8_t *out_alert,
CBS *cbs) {
CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool;
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ret(sk_CRYPTO_BUFFER_new_null());
if (!ret) {
*out_alert = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return nullptr;
}
CBS child;
if (!CBS_get_u16_length_prefixed(cbs, &child)) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
return nullptr;
}
while (CBS_len(&child) > 0) {
CBS distinguished_name;
if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) {
*out_alert = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG);
return nullptr;
}
UniquePtr<CRYPTO_BUFFER> buffer(
CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool));
if (!buffer ||
!PushToStack(ret.get(), std::move(buffer))) {
*out_alert = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return nullptr;
}
}
if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) {
*out_alert = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return nullptr;
}
return ret;
}
int ssl_add_client_CA_list(SSL *ssl, CBB *cbb) {
CBB child, name_cbb;
if (!CBB_add_u16_length_prefixed(cbb, &child)) {
return 0;
}
STACK_OF(CRYPTO_BUFFER) *names = ssl->client_CA;
if (names == NULL) {
names = ssl->ctx->client_CA;
}
if (names == NULL) {
return CBB_flush(cbb);
}
for (const CRYPTO_BUFFER *name : names) {
if (!CBB_add_u16_length_prefixed(&child, &name_cbb) ||
!CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name),
CRYPTO_BUFFER_len(name))) {
return 0;
}
}
return CBB_flush(cbb);
}
int ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
const CRYPTO_BUFFER *leaf) {
SSL *const ssl = hs->ssl;
assert(ssl3_protocol_version(ssl) < TLS1_3_VERSION);
// Check the certificate's type matches the cipher.
if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE);
return 0;
}
// Check key usages for all key types but RSA. This is needed to distinguish
// ECDH certificates, which we do not support, from ECDSA certificates. In
// principle, we should check RSA key usages based on cipher, but this breaks
// buggy antivirus deployments. Other key types are always used for signing.
//
// TODO(davidben): Get more recent data on RSA key usages.
if (EVP_PKEY_id(pkey) != EVP_PKEY_RSA) {
CBS leaf_cbs;
CBS_init(&leaf_cbs, CRYPTO_BUFFER_data(leaf), CRYPTO_BUFFER_len(leaf));
if (!ssl_cert_check_digital_signature_key_usage(&leaf_cbs)) {
return 0;
}
}
if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
// Check the key's group and point format are acceptable.
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
uint16_t group_id;
if (!ssl_nid_to_group_id(
&group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) ||
!tls1_check_group_id(ssl, group_id) ||
EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT);
return 0;
}
}
return 1;
}
int ssl_on_certificate_selected(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!ssl_has_certificate(ssl)) {
// Nothing to do.
return 1;
}
if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(ssl)) {
return 0;
}
CBS leaf;
CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(ssl->cert->chain, 0), &leaf);
hs->local_pubkey = ssl_cert_parse_pubkey(&leaf);
return hs->local_pubkey != NULL;
}
} // namespace bssl
using namespace bssl;
int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs,
size_t num_certs, EVP_PKEY *privkey,
const SSL_PRIVATE_KEY_METHOD *privkey_method) {
return cert_set_chain_and_key(ssl->cert, certs, num_certs, privkey,
privkey_method);
}
int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs,
size_t num_certs, EVP_PKEY *privkey,
const SSL_PRIVATE_KEY_METHOD *privkey_method) {
return cert_set_chain_and_key(ctx->cert, certs, num_certs, privkey,
privkey_method);
}
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
const uint8_t *der) {
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
if (!buffer) {
return 0;
}
return ssl_set_cert(ctx->cert, std::move(buffer));
}
int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
if (!buffer) {
return 0;
}
return ssl_set_cert(ssl->cert, std::move(buffer));
}
void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
void *arg) {
ssl_cert_set_cert_cb(ctx->cert, cb, arg);
}
void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
ssl_cert_set_cert_cb(ssl->cert, cb, arg);
}
STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) {
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return NULL;
}
return session->certs;
}
STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) {
if (ssl->s3->hs == NULL) {
return NULL;
}
return ssl->s3->hs->ca_names.get();
}
static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list,
size_t list_len) {
CBS sct_list;
CBS_init(&sct_list, list, list_len);
if (!ssl_is_sct_list_valid(&sct_list)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST);
return 0;
}
CRYPTO_BUFFER_free(cert->signed_cert_timestamp_list);
cert->signed_cert_timestamp_list =
CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), NULL);
return cert->signed_cert_timestamp_list != NULL;
}
int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
size_t list_len) {
return set_signed_cert_timestamp_list(ctx->cert, list, list_len);
}
int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list,
size_t list_len) {
return set_signed_cert_timestamp_list(ssl->cert, list, list_len);
}
int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
size_t response_len) {
CRYPTO_BUFFER_free(ctx->cert->ocsp_response);
ctx->cert->ocsp_response = CRYPTO_BUFFER_new(response, response_len, NULL);
return ctx->cert->ocsp_response != NULL;
}
int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response,
size_t response_len) {
CRYPTO_BUFFER_free(ssl->cert->ocsp_response);
ssl->cert->ocsp_response = CRYPTO_BUFFER_new(response, response_len, NULL);
return ssl->cert->ocsp_response != NULL;
}
void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) {
ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx);
sk_CRYPTO_BUFFER_pop_free(ctx->client_CA, CRYPTO_BUFFER_free);
ctx->client_CA = name_list;
}
void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) {
ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl);
sk_CRYPTO_BUFFER_pop_free(ssl->client_CA, CRYPTO_BUFFER_free);
ssl->client_CA = name_list;
}