| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * ECC cipher suite support in OpenSSL originally written by |
| * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/ec.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| namespace bssl { |
| |
| enum ssl_server_hs_state_t { |
| state_start_accept = 0, |
| state_read_client_hello, |
| state_select_certificate, |
| state_tls13, |
| state_select_parameters, |
| state_send_server_hello, |
| state_send_server_certificate, |
| state_send_server_key_exchange, |
| state_send_server_hello_done, |
| state_read_client_certificate, |
| state_verify_client_certificate, |
| state_read_client_key_exchange, |
| state_read_client_certificate_verify, |
| state_read_change_cipher_spec, |
| state_process_change_cipher_spec, |
| state_read_next_proto, |
| state_read_channel_id, |
| state_read_client_finished, |
| state_send_server_finished, |
| state_finish_server_handshake, |
| state_done, |
| }; |
| |
| int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello, |
| uint16_t id) { |
| CBS cipher_suites; |
| CBS_init(&cipher_suites, client_hello->cipher_suites, |
| client_hello->cipher_suites_len); |
| |
| while (CBS_len(&cipher_suites) > 0) { |
| uint16_t got_id; |
| if (!CBS_get_u16(&cipher_suites, &got_id)) { |
| return 0; |
| } |
| |
| if (got_id == id) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| assert(!ssl->s3->have_version); |
| CBS supported_versions, versions; |
| if (ssl_client_hello_get_extension(client_hello, &supported_versions, |
| TLSEXT_TYPE_supported_versions)) { |
| if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) || |
| CBS_len(&supported_versions) != 0 || |
| CBS_len(&versions) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return 0; |
| } |
| } else { |
| // Convert the ClientHello version to an equivalent supported_versions |
| // extension. |
| static const uint8_t kTLSVersions[] = { |
| 0x03, 0x03, // TLS 1.2 |
| 0x03, 0x02, // TLS 1.1 |
| 0x03, 0x01, // TLS 1 |
| 0x03, 0x00, // SSL 3 |
| }; |
| |
| static const uint8_t kDTLSVersions[] = { |
| 0xfe, 0xfd, // DTLS 1.2 |
| 0xfe, 0xff, // DTLS 1.0 |
| }; |
| |
| size_t versions_len = 0; |
| if (SSL_is_dtls(ssl)) { |
| if (client_hello->version <= DTLS1_2_VERSION) { |
| versions_len = 4; |
| } else if (client_hello->version <= DTLS1_VERSION) { |
| versions_len = 2; |
| } |
| CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len, |
| versions_len); |
| } else { |
| if (client_hello->version >= TLS1_2_VERSION) { |
| versions_len = 8; |
| } else if (client_hello->version >= TLS1_1_VERSION) { |
| versions_len = 6; |
| } else if (client_hello->version >= TLS1_VERSION) { |
| versions_len = 4; |
| } else if (client_hello->version >= SSL3_VERSION) { |
| versions_len = 2; |
| } |
| CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len, |
| versions_len); |
| } |
| } |
| |
| if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) { |
| return 0; |
| } |
| |
| // At this point, the connection's version is known and |ssl->version| is |
| // fixed. Begin enforcing the record-layer version. |
| ssl->s3->have_version = true; |
| |
| // Handle FALLBACK_SCSV. |
| if (ssl_client_cipher_list_contains_cipher(client_hello, |
| SSL3_CK_FALLBACK_SCSV & 0xffff) && |
| ssl3_protocol_version(ssl) < hs->max_version) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK); |
| *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list( |
| const SSL_CLIENT_HELLO *client_hello) { |
| CBS cipher_suites; |
| CBS_init(&cipher_suites, client_hello->cipher_suites, |
| client_hello->cipher_suites_len); |
| |
| UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null()); |
| if (!sk) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return nullptr; |
| } |
| |
| while (CBS_len(&cipher_suites) > 0) { |
| uint16_t cipher_suite; |
| |
| if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); |
| return nullptr; |
| } |
| |
| const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite); |
| if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return nullptr; |
| } |
| } |
| |
| return sk; |
| } |
| |
| // ssl_get_compatible_server_ciphers determines the key exchange and |
| // authentication cipher suite masks compatible with the server configuration |
| // and current ClientHello parameters of |hs|. It sets |*out_mask_k| to the key |
| // exchange mask and |*out_mask_a| to the authentication mask. |
| static void ssl_get_compatible_server_ciphers(SSL_HANDSHAKE *hs, |
| uint32_t *out_mask_k, |
| uint32_t *out_mask_a) { |
| SSL *const ssl = hs->ssl; |
| uint32_t mask_k = 0; |
| uint32_t mask_a = 0; |
| |
| if (ssl_has_certificate(ssl)) { |
| mask_a |= ssl_cipher_auth_mask_for_key(hs->local_pubkey.get()); |
| if (EVP_PKEY_id(hs->local_pubkey.get()) == EVP_PKEY_RSA) { |
| mask_k |= SSL_kRSA; |
| } |
| } |
| |
| // Check for a shared group to consider ECDHE ciphers. |
| uint16_t unused; |
| if (tls1_get_shared_group(hs, &unused)) { |
| mask_k |= SSL_kECDHE; |
| } |
| |
| // PSK requires a server callback. |
| if (ssl->psk_server_callback != NULL) { |
| mask_k |= SSL_kPSK; |
| mask_a |= SSL_aPSK; |
| } |
| |
| *out_mask_k = mask_k; |
| *out_mask_a = mask_a; |
| } |
| |
| static const SSL_CIPHER *ssl3_choose_cipher( |
| SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello, |
| const struct ssl_cipher_preference_list_st *server_pref) { |
| SSL *const ssl = hs->ssl; |
| STACK_OF(SSL_CIPHER) *prio, *allow; |
| // in_group_flags will either be NULL, or will point to an array of bytes |
| // which indicate equal-preference groups in the |prio| stack. See the |
| // comment about |in_group_flags| in the |ssl_cipher_preference_list_st| |
| // struct. |
| const uint8_t *in_group_flags; |
| // group_min contains the minimal index so far found in a group, or -1 if no |
| // such value exists yet. |
| int group_min = -1; |
| |
| UniquePtr<STACK_OF(SSL_CIPHER)> client_pref = |
| ssl_parse_client_cipher_list(client_hello); |
| if (!client_pref) { |
| return nullptr; |
| } |
| |
| if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
| prio = server_pref->ciphers; |
| in_group_flags = server_pref->in_group_flags; |
| allow = client_pref.get(); |
| } else { |
| prio = client_pref.get(); |
| in_group_flags = NULL; |
| allow = server_pref->ciphers; |
| } |
| |
| uint32_t mask_k, mask_a; |
| ssl_get_compatible_server_ciphers(hs, &mask_k, &mask_a); |
| |
| for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) { |
| const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i); |
| |
| size_t cipher_index; |
| if (// Check if the cipher is supported for the current version. |
| SSL_CIPHER_get_min_version(c) <= ssl3_protocol_version(ssl) && |
| ssl3_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) && |
| // Check the cipher is supported for the server configuration. |
| (c->algorithm_mkey & mask_k) && |
| (c->algorithm_auth & mask_a) && |
| // Check the cipher is in the |allow| list. |
| sk_SSL_CIPHER_find(allow, &cipher_index, c)) { |
| if (in_group_flags != NULL && in_group_flags[i] == 1) { |
| // This element of |prio| is in a group. Update the minimum index found |
| // so far and continue looking. |
| if (group_min == -1 || (size_t)group_min > cipher_index) { |
| group_min = cipher_index; |
| } |
| } else { |
| if (group_min != -1 && (size_t)group_min < cipher_index) { |
| cipher_index = group_min; |
| } |
| return sk_SSL_CIPHER_value(allow, cipher_index); |
| } |
| } |
| |
| if (in_group_flags != NULL && in_group_flags[i] == 0 && group_min != -1) { |
| // We are about to leave a group, but we found a match in it, so that's |
| // our answer. |
| return sk_SSL_CIPHER_value(allow, group_min); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) { |
| ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1); |
| hs->state = state_read_client_hello; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) { |
| return ssl_hs_error; |
| } |
| |
| SSL_CLIENT_HELLO client_hello; |
| if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Run the early callback. |
| if (ssl->ctx->select_certificate_cb != NULL) { |
| switch (ssl->ctx->select_certificate_cb(&client_hello)) { |
| case ssl_select_cert_retry: |
| return ssl_hs_certificate_selection_pending; |
| |
| case ssl_select_cert_error: |
| // Connection rejected. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| |
| default: |
| /* fallthrough */; |
| } |
| } |
| |
| // Freeze the version range after the early callback. |
| if (!ssl_get_version_range(ssl, &hs->min_version, &hs->max_version)) { |
| return ssl_hs_error; |
| } |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!negotiate_version(hs, &alert, &client_hello)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| hs->client_version = client_hello.version; |
| if (client_hello.random_len != SSL3_RANDOM_SIZE) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| OPENSSL_memcpy(ssl->s3->client_random, client_hello.random, |
| client_hello.random_len); |
| |
| // Only null compression is supported. TLS 1.3 further requires the peer |
| // advertise no other compression. |
| if (OPENSSL_memchr(client_hello.compression_methods, 0, |
| client_hello.compression_methods_len) == NULL || |
| (ssl3_protocol_version(ssl) >= TLS1_3_VERSION && |
| client_hello.compression_methods_len != 1)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return ssl_hs_error; |
| } |
| |
| // TLS extensions. |
| if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state_select_certificate; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_select_certificate(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| // Call |cert_cb| to update server certificates if required. |
| if (ssl->cert->cert_cb != NULL) { |
| int rv = ssl->cert->cert_cb(ssl, ssl->cert->cert_cb_arg); |
| if (rv == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| if (rv < 0) { |
| return ssl_hs_x509_lookup; |
| } |
| } |
| |
| if (!ssl_on_certificate_selected(hs)) { |
| return ssl_hs_error; |
| } |
| |
| if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) { |
| // Jump to the TLS 1.3 state machine. |
| hs->state = state_tls13; |
| return ssl_hs_ok; |
| } |
| |
| SSL_CLIENT_HELLO client_hello; |
| if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
| return ssl_hs_error; |
| } |
| |
| // Negotiate the cipher suite. This must be done after |cert_cb| so the |
| // certificate is finalized. |
| hs->new_cipher = |
| ssl3_choose_cipher(hs, &client_hello, ssl_get_cipher_preferences(ssl)); |
| if (hs->new_cipher == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state_select_parameters; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { |
| enum ssl_hs_wait_t wait = tls13_server_handshake(hs); |
| if (wait == ssl_hs_ok) { |
| hs->state = state_finish_server_handshake; |
| return ssl_hs_ok; |
| } |
| |
| return wait; |
| } |
| |
| static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| SSL_CLIENT_HELLO client_hello; |
| if (!ssl_client_hello_init(ssl, &client_hello, msg)) { |
| return ssl_hs_error; |
| } |
| |
| // Determine whether we are doing session resumption. |
| UniquePtr<SSL_SESSION> session; |
| bool tickets_supported = false, renew_ticket = false; |
| enum ssl_hs_wait_t wait = ssl_get_prev_session( |
| ssl, &session, &tickets_supported, &renew_ticket, &client_hello); |
| if (wait != ssl_hs_ok) { |
| return wait; |
| } |
| |
| if (session) { |
| if (session->extended_master_secret && !hs->extended_master_secret) { |
| // A ClientHello without EMS that attempts to resume a session with EMS |
| // is fatal to the connection. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl_session_is_resumable(hs, session.get()) || |
| // If the client offers the EMS extension, but the previous session |
| // didn't use it, then negotiate a new session. |
| hs->extended_master_secret != session->extended_master_secret) { |
| session.reset(); |
| } |
| } |
| |
| if (session) { |
| // Use the old session. |
| hs->ticket_expected = renew_ticket; |
| ssl->session = session.release(); |
| ssl->s3->session_reused = true; |
| } else { |
| hs->ticket_expected = tickets_supported; |
| ssl_set_session(ssl, NULL); |
| if (!ssl_get_new_session(hs, 1 /* server */)) { |
| return ssl_hs_error; |
| } |
| |
| // Clear the session ID if we want the session to be single-use. |
| if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) { |
| hs->new_session->session_id_length = 0; |
| } |
| } |
| |
| if (ssl->ctx->dos_protection_cb != NULL && |
| ssl->ctx->dos_protection_cb(&client_hello) == 0) { |
| // Connection rejected for DOS reasons. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session == NULL) { |
| hs->new_session->cipher = hs->new_cipher; |
| |
| // Determine whether to request a client certificate. |
| hs->cert_request = !!(ssl->verify_mode & SSL_VERIFY_PEER); |
| // Only request a certificate if Channel ID isn't negotiated. |
| if ((ssl->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) && |
| ssl->s3->tlsext_channel_id_valid) { |
| hs->cert_request = false; |
| } |
| // CertificateRequest may only be sent in certificate-based ciphers. |
| if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| hs->cert_request = false; |
| } |
| |
| if (!hs->cert_request) { |
| // OpenSSL returns X509_V_OK when no certificates are requested. This is |
| // classed by them as a bug, but it's assumed by at least NGINX. |
| hs->new_session->verify_result = X509_V_OK; |
| } |
| } |
| |
| // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was |
| // deferred. Complete it now. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| // Now that all parameters are known, initialize the handshake hash and hash |
| // the ClientHello. |
| if (!hs->transcript.InitHash(ssl3_protocol_version(ssl), hs->new_cipher) || |
| !ssl_hash_message(hs, msg)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Release the handshake buffer if client authentication isn't required. |
| if (!hs->cert_request) { |
| hs->transcript.FreeBuffer(); |
| } |
| |
| ssl->method->next_message(ssl); |
| |
| hs->state = state_send_server_hello; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| // We only accept ChannelIDs on connections with ECDHE in order to avoid a |
| // known attack while we fix ChannelID itself. |
| if (ssl->s3->tlsext_channel_id_valid && |
| (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) { |
| ssl->s3->tlsext_channel_id_valid = false; |
| } |
| |
| // If this is a resumption and the original handshake didn't support |
| // ChannelID then we didn't record the original handshake hashes in the |
| // session and so cannot resume with ChannelIDs. |
| if (ssl->session != NULL && |
| ssl->session->original_handshake_hash_len == 0) { |
| ssl->s3->tlsext_channel_id_valid = false; |
| } |
| |
| struct OPENSSL_timeval now; |
| ssl_get_current_time(ssl, &now); |
| ssl->s3->server_random[0] = now.tv_sec >> 24; |
| ssl->s3->server_random[1] = now.tv_sec >> 16; |
| ssl->s3->server_random[2] = now.tv_sec >> 8; |
| ssl->s3->server_random[3] = now.tv_sec; |
| if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) { |
| return ssl_hs_error; |
| } |
| |
| // TODO(davidben): Implement the TLS 1.1 and 1.2 downgrade sentinels once TLS |
| // 1.3 is finalized and we are not implementing a draft version. |
| |
| const SSL_SESSION *session = hs->new_session.get(); |
| if (ssl->session != NULL) { |
| session = ssl->session; |
| } |
| |
| ScopedCBB cbb; |
| CBB body, session_id; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) || |
| !CBB_add_u16(&body, ssl->version) || |
| !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) || |
| !CBB_add_u8_length_prefixed(&body, &session_id) || |
| !CBB_add_bytes(&session_id, session->session_id, |
| session->session_id_length) || |
| !CBB_add_u16(&body, ssl_cipher_get_value(hs->new_cipher)) || |
| !CBB_add_u8(&body, 0 /* no compression */) || |
| !ssl_add_serverhello_tlsext(hs, &body) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session != NULL) { |
| hs->state = state_send_server_finished; |
| } else { |
| hs->state = state_send_server_certificate; |
| } |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| ScopedCBB cbb; |
| |
| if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| if (!ssl_has_certificate(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl3_output_cert_chain(ssl)) { |
| return ssl_hs_error; |
| } |
| |
| if (hs->certificate_status_expected) { |
| CBB body, ocsp_response; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_CERTIFICATE_STATUS) || |
| !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) || |
| !CBB_add_u24_length_prefixed(&body, &ocsp_response) || |
| !CBB_add_bytes(&ocsp_response, |
| CRYPTO_BUFFER_data(ssl->cert->ocsp_response), |
| CRYPTO_BUFFER_len(ssl->cert->ocsp_response)) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| } |
| |
| // Assemble ServerKeyExchange parameters if needed. |
| uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) || |
| ((alg_a & SSL_aPSK) && ssl->psk_identity_hint)) { |
| |
| // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend |
| // the client and server randoms for the signing transcript. |
| CBB child; |
| if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) || |
| !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) || |
| !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) { |
| return ssl_hs_error; |
| } |
| |
| // PSK ciphers begin with an identity hint. |
| if (alg_a & SSL_aPSK) { |
| size_t len = |
| (ssl->psk_identity_hint == NULL) ? 0 : strlen(ssl->psk_identity_hint); |
| if (!CBB_add_u16_length_prefixed(cbb.get(), &child) || |
| !CBB_add_bytes(&child, (const uint8_t *)ssl->psk_identity_hint, |
| len)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| if (alg_k & SSL_kECDHE) { |
| // Determine the group to use. |
| uint16_t group_id; |
| if (!tls1_get_shared_group(hs, &group_id)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| hs->new_session->group_id = group_id; |
| |
| // Set up ECDH, generate a key, and emit the public half. |
| hs->key_share = SSLKeyShare::Create(group_id); |
| if (!hs->key_share || |
| !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) || |
| !CBB_add_u16(cbb.get(), group_id) || |
| !CBB_add_u8_length_prefixed(cbb.get(), &child) || |
| !hs->key_share->Offer(&child)) { |
| return ssl_hs_error; |
| } |
| } else { |
| assert(alg_k & SSL_kPSK); |
| } |
| |
| if (!CBB_finish(cbb.get(), &hs->server_params, &hs->server_params_len)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| hs->state = state_send_server_key_exchange; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->server_params_len == 0) { |
| hs->state = state_send_server_hello_done; |
| return ssl_hs_ok; |
| } |
| |
| ScopedCBB cbb; |
| CBB body, child; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_SERVER_KEY_EXCHANGE) || |
| // |hs->server_params| contains a prefix for signing. |
| hs->server_params_len < 2 * SSL3_RANDOM_SIZE || |
| !CBB_add_bytes(&body, hs->server_params + 2 * SSL3_RANDOM_SIZE, |
| hs->server_params_len - 2 * SSL3_RANDOM_SIZE)) { |
| return ssl_hs_error; |
| } |
| |
| // Add a signature. |
| if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| if (!ssl_has_private_key(ssl)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Determine the signature algorithm. |
| uint16_t signature_algorithm; |
| if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) { |
| return ssl_hs_error; |
| } |
| if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) { |
| if (!CBB_add_u16(&body, signature_algorithm)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| |
| // Add space for the signature. |
| const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get()); |
| uint8_t *ptr; |
| if (!CBB_add_u16_length_prefixed(&body, &child) || |
| !CBB_reserve(&child, &ptr, max_sig_len)) { |
| return ssl_hs_error; |
| } |
| |
| size_t sig_len; |
| switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, |
| signature_algorithm, hs->server_params, |
| hs->server_params_len)) { |
| case ssl_private_key_success: |
| if (!CBB_did_write(&child, sig_len)) { |
| return ssl_hs_error; |
| } |
| break; |
| case ssl_private_key_failure: |
| return ssl_hs_error; |
| case ssl_private_key_retry: |
| return ssl_hs_private_key_operation; |
| } |
| } |
| |
| if (!ssl_add_message_cbb(ssl, cbb.get())) { |
| return ssl_hs_error; |
| } |
| |
| OPENSSL_free(hs->server_params); |
| hs->server_params = NULL; |
| hs->server_params_len = 0; |
| |
| hs->state = state_send_server_hello_done; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| ScopedCBB cbb; |
| CBB body; |
| |
| if (hs->cert_request) { |
| CBB cert_types, sigalgs_cbb; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_CERTIFICATE_REQUEST) || |
| !CBB_add_u8_length_prefixed(&body, &cert_types) || |
| !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) || |
| (ssl3_protocol_version(ssl) >= TLS1_VERSION && |
| !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN)) || |
| (ssl3_protocol_version(ssl) >= TLS1_2_VERSION && |
| (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) || |
| !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb))) || |
| !ssl_add_client_CA_list(ssl, &body) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_SERVER_HELLO_DONE) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state_read_client_certificate; |
| return ssl_hs_flush; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (!hs->cert_request) { |
| hs->state = state_verify_client_certificate; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (msg.type != SSL3_MT_CERTIFICATE) { |
| if (ssl->version == SSL3_VERSION && |
| msg.type == SSL3_MT_CLIENT_KEY_EXCHANGE) { |
| // In SSL 3.0, the Certificate message is omitted to signal no |
| // certificate. |
| if (ssl->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| // OpenSSL returns X509_V_OK when no certificates are received. This is |
| // classed by them as a bug, but it's assumed by at least NGINX. |
| hs->new_session->verify_result = X509_V_OK; |
| hs->state = state_verify_client_certificate; |
| return ssl_hs_ok; |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| CBS certificate_msg = msg.body; |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain; |
| if (!ssl_parse_cert_chain(&alert, &chain, &hs->peer_pubkey, |
| ssl->retain_only_sha256_of_client_certs |
| ? hs->new_session->peer_sha256 |
| : NULL, |
| &certificate_msg, ssl->ctx->pool)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| sk_CRYPTO_BUFFER_pop_free(hs->new_session->certs, CRYPTO_BUFFER_free); |
| hs->new_session->certs = chain.release(); |
| |
| if (CBS_len(&certificate_msg) != 0 || |
| !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (sk_CRYPTO_BUFFER_num(hs->new_session->certs) == 0) { |
| // No client certificate so the handshake buffer may be discarded. |
| hs->transcript.FreeBuffer(); |
| |
| // In SSL 3.0, sending no certificate is signaled by omitting the |
| // Certificate message. |
| if (ssl->version == SSL3_VERSION) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATES_RETURNED); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { |
| // Fail for TLS only if we required a certificate |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| // OpenSSL returns X509_V_OK when no certificates are received. This is |
| // classed by them as a bug, but it's assumed by at least NGINX. |
| hs->new_session->verify_result = X509_V_OK; |
| } else if (ssl->retain_only_sha256_of_client_certs) { |
| // The hash will have been filled in. |
| hs->new_session->peer_sha256_valid = 1; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state_verify_client_certificate; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) { |
| if (sk_CRYPTO_BUFFER_num(hs->new_session->certs) > 0) { |
| switch (ssl_verify_peer_cert(hs)) { |
| case ssl_verify_ok: |
| break; |
| case ssl_verify_invalid: |
| return ssl_hs_error; |
| case ssl_verify_retry: |
| return ssl_hs_certificate_verify; |
| } |
| } |
| |
| hs->state = state_read_client_key_exchange; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| ssl_hs_wait_t ret = ssl_hs_error; |
| uint8_t *premaster_secret = NULL; |
| size_t premaster_secret_len = 0; |
| uint8_t *decrypt_buf = NULL; |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) { |
| return ssl_hs_error; |
| } |
| |
| CBS client_key_exchange = msg.body; |
| uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| |
| // If using a PSK key exchange, parse the PSK identity. |
| if (alg_a & SSL_aPSK) { |
| CBS psk_identity; |
| |
| // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK, |
| // then this is the only field in the message. |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) || |
| ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| goto err; |
| } |
| |
| if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN || |
| CBS_contains_zero_byte(&psk_identity)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| goto err; |
| } |
| |
| if (!CBS_strdup(&psk_identity, &hs->new_session->psk_identity)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| goto err; |
| } |
| } |
| |
| // Depending on the key exchange method, compute |premaster_secret| and |
| // |premaster_secret_len|. |
| if (alg_k & SSL_kRSA) { |
| CBS encrypted_premaster_secret; |
| if (ssl->version > SSL3_VERSION) { |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, |
| &encrypted_premaster_secret) || |
| CBS_len(&client_key_exchange) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| goto err; |
| } |
| } else { |
| encrypted_premaster_secret = client_key_exchange; |
| } |
| |
| // Allocate a buffer large enough for an RSA decryption. |
| const size_t rsa_size = EVP_PKEY_size(hs->local_pubkey.get()); |
| decrypt_buf = (uint8_t *)OPENSSL_malloc(rsa_size); |
| if (decrypt_buf == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| // Decrypt with no padding. PKCS#1 padding will be removed as part of the |
| // timing-sensitive code below. |
| size_t decrypt_len; |
| switch (ssl_private_key_decrypt(hs, decrypt_buf, &decrypt_len, rsa_size, |
| CBS_data(&encrypted_premaster_secret), |
| CBS_len(&encrypted_premaster_secret))) { |
| case ssl_private_key_success: |
| break; |
| case ssl_private_key_failure: |
| goto err; |
| case ssl_private_key_retry: |
| ret = ssl_hs_private_key_operation; |
| goto err; |
| } |
| |
| if (decrypt_len != rsa_size) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| goto err; |
| } |
| |
| // Prepare a random premaster, to be used on invalid padding. See RFC 5246, |
| // section 7.4.7.1. |
| premaster_secret_len = SSL_MAX_MASTER_KEY_LENGTH; |
| premaster_secret = (uint8_t *)OPENSSL_malloc(premaster_secret_len); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| if (!RAND_bytes(premaster_secret, premaster_secret_len)) { |
| goto err; |
| } |
| |
| // The smallest padded premaster is 11 bytes of overhead. Small keys are |
| // publicly invalid. |
| if (decrypt_len < 11 + premaster_secret_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| goto err; |
| } |
| |
| // Check the padding. See RFC 3447, section 7.2.2. |
| size_t padding_len = decrypt_len - premaster_secret_len; |
| uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) & |
| constant_time_eq_int_8(decrypt_buf[1], 2); |
| for (size_t i = 2; i < padding_len - 1; i++) { |
| good &= ~constant_time_is_zero_8(decrypt_buf[i]); |
| } |
| good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]); |
| |
| // The premaster secret must begin with |client_version|. This too must be |
| // checked in constant time (http://eprint.iacr.org/2003/052/). |
| good &= constant_time_eq_8(decrypt_buf[padding_len], |
| (unsigned)(hs->client_version >> 8)); |
| good &= constant_time_eq_8(decrypt_buf[padding_len + 1], |
| (unsigned)(hs->client_version & 0xff)); |
| |
| // Select, in constant time, either the decrypted premaster or the random |
| // premaster based on |good|. |
| for (size_t i = 0; i < premaster_secret_len; i++) { |
| premaster_secret[i] = constant_time_select_8( |
| good, decrypt_buf[padding_len + i], premaster_secret[i]); |
| } |
| |
| OPENSSL_free(decrypt_buf); |
| decrypt_buf = NULL; |
| } else if (alg_k & SSL_kECDHE) { |
| // Parse the ClientKeyExchange. |
| CBS peer_key; |
| if (!CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key) || |
| CBS_len(&client_key_exchange) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| goto err; |
| } |
| |
| // Compute the premaster. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!hs->key_share->Finish(&premaster_secret, &premaster_secret_len, &alert, |
| CBS_data(&peer_key), CBS_len(&peer_key))) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| goto err; |
| } |
| |
| // The key exchange state may now be discarded. |
| hs->key_share.reset(); |
| } else if (!(alg_k & SSL_kPSK)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| goto err; |
| } |
| |
| // For a PSK cipher suite, the actual pre-master secret is combined with the |
| // pre-shared key. |
| if (alg_a & SSL_aPSK) { |
| if (ssl->psk_server_callback == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| // Look up the key for the identity. |
| uint8_t psk[PSK_MAX_PSK_LEN]; |
| unsigned psk_len = ssl->psk_server_callback( |
| ssl, hs->new_session->psk_identity, psk, sizeof(psk)); |
| if (psk_len > PSK_MAX_PSK_LEN) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| goto err; |
| } else if (psk_len == 0) { |
| // PSK related to the given identity not found. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY); |
| goto err; |
| } |
| |
| if (alg_k & SSL_kPSK) { |
| // In plain PSK, other_secret is a block of 0s with the same length as the |
| // pre-shared key. |
| premaster_secret_len = psk_len; |
| premaster_secret = (uint8_t *)OPENSSL_malloc(premaster_secret_len); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| OPENSSL_memset(premaster_secret, 0, premaster_secret_len); |
| } |
| |
| ScopedCBB new_premaster; |
| CBB child; |
| uint8_t *new_data; |
| size_t new_len; |
| if (!CBB_init(new_premaster.get(), |
| 2 + psk_len + 2 + premaster_secret_len) || |
| !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
| !CBB_add_bytes(&child, premaster_secret, premaster_secret_len) || |
| !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
| !CBB_add_bytes(&child, psk, psk_len) || |
| !CBB_finish(new_premaster.get(), &new_data, &new_len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| OPENSSL_cleanse(premaster_secret, premaster_secret_len); |
| OPENSSL_free(premaster_secret); |
| premaster_secret = new_data; |
| premaster_secret_len = new_len; |
| } |
| |
| if (!ssl_hash_message(hs, msg)) { |
| goto err; |
| } |
| |
| // Compute the master secret. |
| hs->new_session->master_key_length = tls1_generate_master_secret( |
| hs, hs->new_session->master_key, premaster_secret, premaster_secret_len); |
| if (hs->new_session->master_key_length == 0) { |
| goto err; |
| } |
| hs->new_session->extended_master_secret = hs->extended_master_secret; |
| |
| ssl->method->next_message(ssl); |
| hs->state = state_read_client_certificate_verify; |
| ret = ssl_hs_ok; |
| |
| err: |
| if (premaster_secret != NULL) { |
| OPENSSL_cleanse(premaster_secret, premaster_secret_len); |
| OPENSSL_free(premaster_secret); |
| } |
| OPENSSL_free(decrypt_buf); |
| |
| return ret; |
| |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| // Only RSA and ECDSA client certificates are supported, so a |
| // CertificateVerify is required if and only if there's a client certificate. |
| if (!hs->peer_pubkey) { |
| hs->transcript.FreeBuffer(); |
| hs->state = state_read_change_cipher_spec; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) { |
| return ssl_hs_error; |
| } |
| |
| CBS certificate_verify = msg.body, signature; |
| |
| // Determine the signature algorithm. |
| uint16_t signature_algorithm = 0; |
| if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) { |
| if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| hs->new_session->peer_signature_algorithm = signature_algorithm; |
| } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, |
| hs->peer_pubkey.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); |
| return ssl_hs_error; |
| } |
| |
| // Parse and verify the signature. |
| if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) || |
| CBS_len(&certificate_verify) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| int sig_ok; |
| // The SSL3 construction for CertificateVerify does not decompose into a |
| // single final digest and signature, and must be special-cased. |
| if (ssl3_protocol_version(ssl) == SSL3_VERSION) { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| size_t digest_len; |
| if (!hs->transcript.GetSSL3CertVerifyHash( |
| digest, &digest_len, hs->new_session.get(), signature_algorithm)) { |
| return ssl_hs_error; |
| } |
| |
| UniquePtr<EVP_PKEY_CTX> pctx( |
| EVP_PKEY_CTX_new(hs->peer_pubkey.get(), nullptr)); |
| sig_ok = pctx && |
| EVP_PKEY_verify_init(pctx.get()) && |
| EVP_PKEY_verify(pctx.get(), CBS_data(&signature), |
| CBS_len(&signature), digest, digest_len); |
| } else { |
| sig_ok = ssl_public_key_verify( |
| ssl, CBS_data(&signature), CBS_len(&signature), signature_algorithm, |
| hs->peer_pubkey.get(), hs->transcript.buffer_data(), |
| hs->transcript.buffer_len()); |
| } |
| |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| sig_ok = 1; |
| ERR_clear_error(); |
| #endif |
| if (!sig_ok) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // The handshake buffer is no longer necessary, and we may hash the current |
| // message. |
| hs->transcript.FreeBuffer(); |
| if (!ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state_read_change_cipher_spec; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) { |
| hs->state = state_process_change_cipher_spec; |
| return ssl_hs_read_change_cipher_spec; |
| } |
| |
| static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { |
| if (!tls1_change_cipher_state(hs, SSL3_CHANGE_CIPHER_SERVER_READ)) { |
| return ssl_hs_error; |
| } |
| |
| hs->state = state_read_next_proto; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (!hs->next_proto_neg_seen) { |
| hs->state = state_read_channel_id; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) || |
| !ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| CBS next_protocol = msg.body, selected_protocol, padding; |
| if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) || |
| !CBS_get_u8_length_prefixed(&next_protocol, &padding) || |
| CBS_len(&next_protocol) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (!CBS_stow(&selected_protocol, &ssl->s3->next_proto_negotiated, |
| &ssl->s3->next_proto_negotiated_len)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state_read_channel_id; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (!ssl->s3->tlsext_channel_id_valid) { |
| hs->state = state_read_client_finished; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) || |
| !tls1_verify_channel_id(hs, msg) || |
| !ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state_read_client_finished; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| enum ssl_hs_wait_t wait = ssl_get_finished(hs); |
| if (wait != ssl_hs_ok) { |
| return wait; |
| } |
| |
| if (ssl->session != NULL) { |
| hs->state = state_finish_server_handshake; |
| } else { |
| hs->state = state_send_server_finished; |
| } |
| |
| // If this is a full handshake with ChannelID then record the handshake |
| // hashes in |hs->new_session| in case we need them to verify a |
| // ChannelID signature on a resumption of this session in the future. |
| if (ssl->session == NULL && ssl->s3->tlsext_channel_id_valid && |
| !tls1_record_handshake_hashes_for_channel_id(hs)) { |
| return ssl_hs_error; |
| } |
| |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->ticket_expected) { |
| const SSL_SESSION *session; |
| UniquePtr<SSL_SESSION> session_copy; |
| if (ssl->session == NULL) { |
| // Fix the timeout to measure from the ticket issuance time. |
| ssl_session_rebase_time(ssl, hs->new_session.get()); |
| session = hs->new_session.get(); |
| } else { |
| // We are renewing an existing session. Duplicate the session to adjust |
| // the timeout. |
| session_copy = SSL_SESSION_dup(ssl->session, SSL_SESSION_INCLUDE_NONAUTH); |
| if (!session_copy) { |
| return ssl_hs_error; |
| } |
| |
| ssl_session_rebase_time(ssl, session_copy.get()); |
| session = session_copy.get(); |
| } |
| |
| ScopedCBB cbb; |
| CBB body, ticket; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_NEW_SESSION_TICKET) || |
| !CBB_add_u32(&body, session->timeout) || |
| !CBB_add_u16_length_prefixed(&body, &ticket) || |
| !ssl_encrypt_ticket(ssl, &ticket, session) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| return ssl_hs_error; |
| } |
| } |
| |
| if (!ssl->method->add_change_cipher_spec(ssl) || |
| !tls1_change_cipher_state(hs, SSL3_CHANGE_CIPHER_SERVER_WRITE) || |
| !ssl3_send_finished(hs)) { |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session != NULL) { |
| hs->state = state_read_change_cipher_spec; |
| } else { |
| hs->state = state_finish_server_handshake; |
| } |
| return ssl_hs_flush; |
| } |
| |
| static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| ssl->method->on_handshake_complete(ssl); |
| |
| // If we aren't retaining peer certificates then we can discard it now. |
| if (hs->new_session != NULL && ssl->retain_only_sha256_of_client_certs) { |
| sk_CRYPTO_BUFFER_pop_free(hs->new_session->certs, CRYPTO_BUFFER_free); |
| hs->new_session->certs = NULL; |
| ssl->ctx->x509_method->session_clear(hs->new_session.get()); |
| } |
| |
| SSL_SESSION_free(ssl->s3->established_session); |
| if (ssl->session != NULL) { |
| SSL_SESSION_up_ref(ssl->session); |
| ssl->s3->established_session = ssl->session; |
| } else { |
| ssl->s3->established_session = hs->new_session.release(); |
| ssl->s3->established_session->not_resumable = 0; |
| } |
| |
| hs->handshake_finalized = true; |
| ssl->s3->initial_handshake_complete = true; |
| ssl_update_cache(hs, SSL_SESS_CACHE_SERVER); |
| |
| hs->state = state_done; |
| return ssl_hs_ok; |
| } |
| |
| enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) { |
| while (hs->state != state_done) { |
| enum ssl_hs_wait_t ret = ssl_hs_error; |
| enum ssl_server_hs_state_t state = |
| static_cast<enum ssl_server_hs_state_t>(hs->state); |
| switch (state) { |
| case state_start_accept: |
| ret = do_start_accept(hs); |
| break; |
| case state_read_client_hello: |
| ret = do_read_client_hello(hs); |
| break; |
| case state_select_certificate: |
| ret = do_select_certificate(hs); |
| break; |
| case state_tls13: |
| ret = do_tls13(hs); |
| break; |
| case state_select_parameters: |
| ret = do_select_parameters(hs); |
| break; |
| case state_send_server_hello: |
| ret = do_send_server_hello(hs); |
| break; |
| case state_send_server_certificate: |
| ret = do_send_server_certificate(hs); |
| break; |
| case state_send_server_key_exchange: |
| ret = do_send_server_key_exchange(hs); |
| break; |
| case state_send_server_hello_done: |
| ret = do_send_server_hello_done(hs); |
| break; |
| case state_read_client_certificate: |
| ret = do_read_client_certificate(hs); |
| break; |
| case state_verify_client_certificate: |
| ret = do_verify_client_certificate(hs); |
| break; |
| case state_read_client_key_exchange: |
| ret = do_read_client_key_exchange(hs); |
| break; |
| case state_read_client_certificate_verify: |
| ret = do_read_client_certificate_verify(hs); |
| break; |
| case state_read_change_cipher_spec: |
| ret = do_read_change_cipher_spec(hs); |
| break; |
| case state_process_change_cipher_spec: |
| ret = do_process_change_cipher_spec(hs); |
| break; |
| case state_read_next_proto: |
| ret = do_read_next_proto(hs); |
| break; |
| case state_read_channel_id: |
| ret = do_read_channel_id(hs); |
| break; |
| case state_read_client_finished: |
| ret = do_read_client_finished(hs); |
| break; |
| case state_send_server_finished: |
| ret = do_send_server_finished(hs); |
| break; |
| case state_finish_server_handshake: |
| ret = do_finish_server_handshake(hs); |
| break; |
| case state_done: |
| ret = ssl_hs_ok; |
| break; |
| } |
| |
| if (hs->state != state) { |
| ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1); |
| } |
| |
| if (ret != ssl_hs_ok) { |
| return ret; |
| } |
| } |
| |
| ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); |
| return ssl_hs_ok; |
| } |
| |
| const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) { |
| enum ssl_server_hs_state_t state = |
| static_cast<enum ssl_server_hs_state_t>(hs->state); |
| switch (state) { |
| case state_start_accept: |
| return "TLS server start_accept"; |
| case state_read_client_hello: |
| return "TLS server read_client_hello"; |
| case state_select_certificate: |
| return "TLS server select_certificate"; |
| case state_tls13: |
| return tls13_server_handshake_state(hs); |
| case state_select_parameters: |
| return "TLS server select_parameters"; |
| case state_send_server_hello: |
| return "TLS server send_server_hello"; |
| case state_send_server_certificate: |
| return "TLS server send_server_certificate"; |
| case state_send_server_key_exchange: |
| return "TLS server send_server_key_exchange"; |
| case state_send_server_hello_done: |
| return "TLS server send_server_hello_done"; |
| case state_read_client_certificate: |
| return "TLS server read_client_certificate"; |
| case state_verify_client_certificate: |
| return "TLS server verify_client_certificate"; |
| case state_read_client_key_exchange: |
| return "TLS server read_client_key_exchange"; |
| case state_read_client_certificate_verify: |
| return "TLS server read_client_certificate_verify"; |
| case state_read_change_cipher_spec: |
| return "TLS server read_change_cipher_spec"; |
| case state_process_change_cipher_spec: |
| return "TLS server process_change_cipher_spec"; |
| case state_read_next_proto: |
| return "TLS server read_next_proto"; |
| case state_read_channel_id: |
| return "TLS server read_channel_id"; |
| case state_read_client_finished: |
| return "TLS server read_client_finished"; |
| case state_send_server_finished: |
| return "TLS server send_server_finished"; |
| case state_finish_server_handshake: |
| return "TLS server finish_server_handshake"; |
| case state_done: |
| return "TLS server done"; |
| } |
| |
| return "TLS server unknown"; |
| } |
| |
| } |