| /* ==================================================================== |
| * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #ifndef OPENSSL_HEADER_MODES_INTERNAL_H |
| #define OPENSSL_HEADER_MODES_INTERNAL_H |
| |
| #include <openssl/base.h> |
| |
| #include <string.h> |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| #define asm __asm__ |
| |
| #define STRICT_ALIGNMENT 1 |
| #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64) |
| #undef STRICT_ALIGNMENT |
| #define STRICT_ALIGNMENT 0 |
| #endif |
| |
| #if defined(__GNUC__) && __GNUC__ >= 2 |
| static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
| return __builtin_bswap32(x); |
| } |
| |
| static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
| return __builtin_bswap64(x); |
| } |
| #elif defined(_MSC_VER) |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <intrin.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #pragma intrinsic(_byteswap_uint64, _byteswap_ulong) |
| static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
| return _byteswap_ulong(x); |
| } |
| |
| static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
| return _byteswap_uint64(x); |
| } |
| #else |
| static inline uint32_t CRYPTO_bswap4(uint32_t x) { |
| x = (x >> 16) | (x << 16); |
| x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8); |
| return x; |
| } |
| |
| static inline uint64_t CRYPTO_bswap8(uint64_t x) { |
| return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32); |
| } |
| #endif |
| |
| static inline uint32_t GETU32(const void *in) { |
| uint32_t v; |
| memcpy(&v, in, sizeof(v)); |
| return CRYPTO_bswap4(v); |
| } |
| |
| static inline void PUTU32(void *out, uint32_t v) { |
| v = CRYPTO_bswap4(v); |
| memcpy(out, &v, sizeof(v)); |
| } |
| |
| static inline uint32_t GETU32_aligned(const void *in) { |
| const char *alias = (const char *) in; |
| return CRYPTO_bswap4(*((const uint32_t *) alias)); |
| } |
| |
| static inline void PUTU32_aligned(void *in, uint32_t v) { |
| char *alias = (char *) in; |
| *((uint32_t *) alias) = CRYPTO_bswap4(v); |
| } |
| |
| /* block128_f is the type of a 128-bit, block cipher. */ |
| typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
| const void *key); |
| |
| /* GCM definitions */ |
| typedef struct { uint64_t hi,lo; } u128; |
| |
| /* gmult_func multiplies |Xi| by the GCM key and writes the result back to |
| * |Xi|. */ |
| typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]); |
| |
| /* ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
| * |inp|. The result is written back to |Xi| and the |len| argument must be a |
| * multiple of 16. */ |
| typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16], |
| const uint8_t *inp, size_t len); |
| |
| /* This differs from upstream's |gcm128_context| in that it does not have the |
| * |key| pointer, in order to make it |memcpy|-friendly. Rather the key is |
| * passed into each call that needs it. */ |
| struct gcm128_context { |
| /* Following 6 names follow names in GCM specification */ |
| union { |
| uint64_t u[2]; |
| uint32_t d[4]; |
| uint8_t c[16]; |
| size_t t[16 / sizeof(size_t)]; |
| } Yi, EKi, EK0, len, Xi; |
| |
| u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| |
| unsigned int mres, ares; |
| block128_f block; |
| }; |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| /* crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
| * used. */ |
| int crypto_gcm_clmul_enabled(void); |
| #endif |
| |
| |
| /* CTR. */ |
| |
| /* ctr128_f is the type of a function that performs CTR-mode encryption. */ |
| typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
| const void *key, const uint8_t ivec[16]); |
| |
| /* CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |
| * |len| bytes from |in| to |out| using |block| in counter mode. There's no |
| * requirement that |len| be a multiple of any value and any partial blocks are |
| * stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
| * call. The counter is a 128-bit, big-endian value in |ivec| and is |
| * incremented by this function. */ |
| void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], |
| uint8_t ecount_buf[16], unsigned *num, |
| block128_f block); |
| |
| /* CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes |
| * |ctr|, a function that performs CTR mode but only deals with the lower 32 |
| * bits of the counter. This is useful when |ctr| can be an optimised |
| * function. */ |
| void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], |
| uint8_t ecount_buf[16], unsigned *num, |
| ctr128_f ctr); |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) |
| void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, |
| const void *key, const uint8_t *ivec); |
| #endif |
| |
| |
| /* GCM. |
| * |
| * This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
| * not have a |key| pointer that points to the key as upstream's version does. |
| * Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
| * can be safely copied. */ |
| |
| typedef struct gcm128_context GCM128_CONTEXT; |
| |
| /* CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
| * |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
| * accelerated) functions for performing operations in the GHASH field. */ |
| void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
| u128 out_table[16], const uint8_t *gcm_key); |
| |
| /* CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with |
| * the given key. */ |
| OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key, |
| block128_f block); |
| |
| /* CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the |
| * same key that was passed to |CRYPTO_gcm128_init|. */ |
| OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *iv, size_t iv_len); |
| |
| /* CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. |
| * This must be called before and data is encrypted. It returns one on success |
| * and zero otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, |
| size_t len); |
| |
| /* CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| |
| * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
| * on success and zero otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len); |
| |
| /* CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| |
| * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
| * on success and zero otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len); |
| |
| /* CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using |
| * a CTR function that only handles the bottom 32 bits of the nonce, like |
| * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
| * passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
| * otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
| const void *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len, ctr128_f stream); |
| |
| /* CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using |
| * a CTR function that only handles the bottom 32 bits of the nonce, like |
| * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
| * passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
| * otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
| const void *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len, ctr128_f stream); |
| |
| /* CRYPTO_gcm128_finish calculates the authenticator and compares it against |
| * |len| bytes of |tag|. It returns one on success and zero otherwise. */ |
| OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, |
| size_t len); |
| |
| /* CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
| * The minimum of |len| and 16 bytes are copied into |tag|. */ |
| OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, |
| size_t len); |
| |
| |
| /* CBC. */ |
| |
| /* cbc128_f is the type of a function that performs CBC-mode encryption. */ |
| typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], int enc); |
| |
| /* CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
| * given IV and block cipher in CBC mode. The input need not be a multiple of |
| * 128 bits long, but the output will round up to the nearest 128 bit multiple, |
| * zero padding the input if needed. The IV will be updated on return. */ |
| void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], block128_f block); |
| |
| /* CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
| * given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
| * bits then only that many bytes will be written, but a multiple of 128 bits |
| * is always read from |in|. The IV will be updated on return. */ |
| void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], block128_f block); |
| |
| |
| /* OFB. */ |
| |
| /* CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
| * |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
| * requirement that |len| be a multiple of any value and any partial blocks are |
| * stored in |ivec| and |*num|, the latter must be zero before the initial |
| * call. */ |
| void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, |
| size_t len, const void *key, uint8_t ivec[16], |
| unsigned *num, block128_f block); |
| |
| |
| /* CFB. */ |
| |
| /* CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| * from |in| to |out| using |block| in CFB mode. There's no requirement that |
| * |len| be a multiple of any value and any partial blocks are stored in |ivec| |
| * and |*num|, the latter must be zero before the initial call. */ |
| void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], unsigned *num, |
| int enc, block128_f block); |
| |
| /* CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| * from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
| * |num| should be set to zero. */ |
| void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], unsigned *num, |
| int enc, block128_f block); |
| |
| /* CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| * from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
| * |num| should be set to zero. */ |
| void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
| const void *key, uint8_t ivec[16], unsigned *num, |
| int enc, block128_f block); |
| |
| size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
| const void *key, uint8_t ivec[16], |
| block128_f block); |
| |
| |
| /* POLYVAL. |
| * |
| * POLYVAL is a polynomial authenticator that operates over a field very |
| * similar to the one that GHASH uses. See |
| * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. */ |
| |
| typedef union { |
| uint64_t u[2]; |
| uint8_t c[16]; |
| } polyval_block; |
| |
| struct polyval_ctx { |
| polyval_block S; |
| u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| }; |
| |
| /* CRYPTO_POLYVAL_init initialises |ctx| using |key|. */ |
| void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
| |
| /* CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
| * blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
| * must be a multiple of 16. */ |
| void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
| size_t in_len); |
| |
| /* CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. */ |
| void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
| |
| |
| #if defined(__cplusplus) |
| } /* extern C */ |
| #endif |
| |
| #endif /* OPENSSL_HEADER_MODES_INTERNAL_H */ |