| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ecdsa.h> |
| |
| #include <vector> |
| |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| enum Api { |
| kEncodedApi, |
| kRawApi, |
| }; |
| |
| // VerifyECDSASig returns true on success, false on failure. |
| static bool VerifyECDSASig(Api api, const uint8_t *digest, |
| size_t digest_len, const ECDSA_SIG *ecdsa_sig, |
| EC_KEY *eckey, int expected_result) { |
| int actual_result; |
| |
| switch (api) { |
| case kEncodedApi: { |
| uint8_t *der; |
| size_t der_len; |
| if (!ECDSA_SIG_to_bytes(&der, &der_len, ecdsa_sig)) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> delete_der(der); |
| actual_result = ECDSA_verify(0, digest, digest_len, der, der_len, eckey); |
| break; |
| } |
| |
| case kRawApi: |
| actual_result = ECDSA_do_verify(digest, digest_len, ecdsa_sig, eckey); |
| break; |
| |
| default: |
| return false; |
| } |
| return expected_result == actual_result; |
| } |
| |
| // TestTamperedSig verifies that signature verification fails when a valid |
| // signature is tampered with. |ecdsa_sig| must be a valid signature, which will |
| // be modified. TestTamperedSig returns true on success, false on failure. |
| static bool TestTamperedSig(FILE *out, Api api, const uint8_t *digest, |
| size_t digest_len, ECDSA_SIG *ecdsa_sig, |
| EC_KEY *eckey, const BIGNUM *order) { |
| // Modify a single byte of the signature: to ensure we don't |
| // garble the ASN1 structure, we read the raw signature and |
| // modify a byte in one of the bignums directly. |
| |
| // Store the two BIGNUMs in raw_buf. |
| size_t r_len = BN_num_bytes(ecdsa_sig->r); |
| size_t s_len = BN_num_bytes(ecdsa_sig->s); |
| size_t bn_len = BN_num_bytes(order); |
| if (r_len > bn_len || s_len > bn_len) { |
| return false; |
| } |
| size_t buf_len = 2 * bn_len; |
| std::vector<uint8_t> raw_buf(buf_len); |
| // Pad the bignums with leading zeroes. |
| if (!BN_bn2bin_padded(raw_buf.data(), bn_len, ecdsa_sig->r) || |
| !BN_bn2bin_padded(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s)) { |
| return false; |
| } |
| |
| // Modify a single byte in the buffer. |
| size_t offset = raw_buf[10] % buf_len; |
| uint8_t dirt = raw_buf[11] ? raw_buf[11] : 1; |
| raw_buf[offset] ^= dirt; |
| // Now read the BIGNUMs back in from raw_buf. |
| if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL || |
| BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL || |
| !VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 0)) { |
| return false; |
| } |
| |
| // Sanity check: Undo the modification and verify signature. |
| raw_buf[offset] ^= dirt; |
| if (BN_bin2bn(raw_buf.data(), bn_len, ecdsa_sig->r) == NULL || |
| BN_bin2bn(raw_buf.data() + bn_len, bn_len, ecdsa_sig->s) == NULL || |
| !VerifyECDSASig(api, digest, digest_len, ecdsa_sig, eckey, 1)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestBuiltin(FILE *out) { |
| // Fill digest values with some random data. |
| uint8_t digest[20], wrong_digest[20]; |
| if (!RAND_bytes(digest, 20) || !RAND_bytes(wrong_digest, 20)) { |
| fprintf(out, "ERROR: unable to get random data\n"); |
| return false; |
| } |
| |
| static const struct { |
| int nid; |
| const char *name; |
| } kCurves[] = { |
| { NID_secp224r1, "secp224r1" }, |
| { NID_X9_62_prime256v1, "secp256r1" }, |
| { NID_secp384r1, "secp384r1" }, |
| { NID_secp521r1, "secp521r1" }, |
| { NID_undef, NULL } |
| }; |
| |
| // Create and verify ECDSA signatures with every available curve. |
| fputs("\ntesting ECDSA_sign(), ECDSA_verify(), ECDSA_do_sign(), and " |
| "ECDSA_do_verify() with some internal curves:\n", out); |
| |
| for (size_t n = 0; kCurves[n].nid != NID_undef; n++) { |
| fprintf(out, "%s: ", kCurves[n].name); |
| |
| int nid = kCurves[n].nid; |
| bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(nid)); |
| if (!group) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| const BIGNUM *order = EC_GROUP_get0_order(group.get()); |
| if (BN_num_bits(order) < 160) { |
| // Too small to test. |
| fprintf(out, " skipped\n"); |
| continue; |
| } |
| |
| // Create a new ECDSA key. |
| bssl::UniquePtr<EC_KEY> eckey(EC_KEY_new()); |
| if (!eckey || !EC_KEY_set_group(eckey.get(), group.get()) || |
| !EC_KEY_generate_key(eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| // Create a second key. |
| bssl::UniquePtr<EC_KEY> wrong_eckey(EC_KEY_new()); |
| if (!wrong_eckey || !EC_KEY_set_group(wrong_eckey.get(), group.get()) || |
| !EC_KEY_generate_key(wrong_eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| |
| fprintf(out, "."); |
| fflush(out); |
| |
| // Check the key. |
| if (!EC_KEY_check_key(eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| |
| // Test ASN.1-encoded signatures. |
| // Create a signature. |
| unsigned sig_len = ECDSA_size(eckey.get()); |
| std::vector<uint8_t> signature(sig_len); |
| if (!ECDSA_sign(0, digest, 20, signature.data(), &sig_len, eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| signature.resize(sig_len); |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature. |
| if (!ECDSA_verify(0, digest, 20, signature.data(), signature.size(), |
| eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature with the wrong key. |
| if (ECDSA_verify(0, digest, 20, signature.data(), signature.size(), |
| wrong_eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature using the wrong digest. |
| if (ECDSA_verify(0, wrong_digest, 20, signature.data(), signature.size(), |
| eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify a truncated signature. |
| if (ECDSA_verify(0, digest, 20, signature.data(), signature.size() - 1, |
| eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify a tampered signature. |
| bssl::UniquePtr<ECDSA_SIG> ecdsa_sig(ECDSA_SIG_from_bytes( |
| signature.data(), signature.size())); |
| if (!ecdsa_sig || |
| !TestTamperedSig(out, kEncodedApi, digest, 20, ecdsa_sig.get(), |
| eckey.get(), order)) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| |
| // Test ECDSA_SIG signing and verification. |
| // Create a signature. |
| ecdsa_sig.reset(ECDSA_do_sign(digest, 20, eckey.get())); |
| if (!ecdsa_sig) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature using the correct key. |
| if (!ECDSA_do_verify(digest, 20, ecdsa_sig.get(), eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature with the wrong key. |
| if (ECDSA_do_verify(digest, 20, ecdsa_sig.get(), wrong_eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify the signature using the wrong digest. |
| if (ECDSA_do_verify(wrong_digest, 20, ecdsa_sig.get(), eckey.get())) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| // Verify a tampered signature. |
| if (!TestTamperedSig(out, kRawApi, digest, 20, ecdsa_sig.get(), eckey.get(), |
| order)) { |
| fprintf(out, " failed\n"); |
| return false; |
| } |
| fprintf(out, "."); |
| fflush(out); |
| |
| fprintf(out, " ok\n"); |
| // Clear bogus errors. |
| ERR_clear_error(); |
| } |
| |
| return true; |
| } |
| |
| static bool TestECDSA_SIG_max_len(size_t order_len) { |
| /* Create the largest possible |ECDSA_SIG| of the given constraints. */ |
| bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new()); |
| if (!sig) { |
| return false; |
| } |
| std::vector<uint8_t> bytes(order_len, 0xff); |
| if (!BN_bin2bn(bytes.data(), bytes.size(), sig->r) || |
| !BN_bin2bn(bytes.data(), bytes.size(), sig->s)) { |
| return false; |
| } |
| /* Serialize it. */ |
| uint8_t *der; |
| size_t der_len; |
| if (!ECDSA_SIG_to_bytes(&der, &der_len, sig.get())) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> delete_der(der); |
| |
| size_t max_len = ECDSA_SIG_max_len(order_len); |
| if (max_len != der_len) { |
| fprintf(stderr, "ECDSA_SIG_max_len(%u) returned %u, wanted %u\n", |
| static_cast<unsigned>(order_len), static_cast<unsigned>(max_len), |
| static_cast<unsigned>(der_len)); |
| return false; |
| } |
| return true; |
| } |
| |
| static size_t BitsToBytes(size_t bits) { |
| return (bits / 8) + (7 + (bits % 8)) / 8; |
| } |
| |
| int main(void) { |
| CRYPTO_library_init(); |
| |
| if (!TestBuiltin(stdout) || |
| !TestECDSA_SIG_max_len(BitsToBytes(224)) || |
| !TestECDSA_SIG_max_len(BitsToBytes(256)) || |
| !TestECDSA_SIG_max_len(BitsToBytes(384)) || |
| !TestECDSA_SIG_max_len(BitsToBytes(521)) || |
| !TestECDSA_SIG_max_len(BitsToBytes(10000))) { |
| printf("\nECDSA test failed\n"); |
| ERR_print_errors_fp(stdout); |
| return 1; |
| } |
| |
| printf("\nPASS\n"); |
| return 0; |
| } |