blob: b3e5644ccd000e705a93484d12df9291c2dae78d [file] [log] [blame] [edit]
// Copyright 2014 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/base.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include "../../internal.h"
#include "../bcm_interface.h"
#include "address.h"
#include "fors.h"
#include "merkle.h"
#include "params.h"
#include "thash.h"
namespace {
namespace fips {
void ensure_keygen_self_test();
void ensure_sign_self_test();
void ensure_verify_self_test();
} // namespace fips
// The OBJECT IDENTIFIER header is also included in these values, per the spec.
const uint8_t kSHA256OID[] = {0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
0x65, 0x03, 0x04, 0x02, 0x01};
const uint8_t kSHA384OID[] = {0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
0x65, 0x03, 0x04, 0x02, 0x02};
#define MAX_OID_LENGTH 11
#define MAX_CONTEXT_LENGTH 255
bcm_infallible generate_key_from_seed_no_self_test(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]) {
// Initialize SK.seed || SK.prf || PK.seed from seed.
OPENSSL_memcpy(out_secret_key, seed, 3 * BCM_SLHDSA_SHA2_128S_N);
// Initialize PK.seed from seed.
OPENSSL_memcpy(out_public_key, seed + 2 * BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N);
uint8_t addr[32] = {0};
slhdsa_set_layer_addr(addr, SLHDSA_SHA2_128S_D - 1);
// Set PK.root
slhdsa_treehash(out_public_key + BCM_SLHDSA_SHA2_128S_N, out_secret_key, 0,
SLHDSA_SHA2_128S_TREE_HEIGHT, out_public_key, addr);
OPENSSL_memcpy(out_secret_key + 3 * BCM_SLHDSA_SHA2_128S_N,
out_public_key + BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N);
// FIPS 140-3 IG 10.3.A comment 1 says of the pair-wise consistency test for
// SLH-DSA:
//
// "For key pairs generated for use with approved algorithms in SP 800-208 and
// FIPS 205, the PCT (described by the tester in TE10.35.02) may be limited to
// confirming the same key identifier (I in the case of LMS, SEED in the case
// of XMSS and PK.SEED for SLH-DSA) is shared by the resulting public and
// private key following generation."
//
// Since this is cheap, we always do this.
if (boringssl_fips_break_test("SLHDSA_PWCT")) {
out_public_key[0] ^= 1;
}
if (OPENSSL_memcmp(out_public_key,
out_secret_key + 2 * BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N) != 0) {
abort();
}
return bcm_infallible::not_approved;
}
// Note that this overreads by a byte. This is fine in the context that it's
// used.
uint64_t load_tree_index(const uint8_t in[8]) {
static_assert(SLHDSA_SHA2_128S_TREE_BYTES == 7,
"This code needs to be updated");
uint64_t index = CRYPTO_load_u64_be(in);
index >>= 8;
index &= (~(uint64_t)0) >> (64 - SLHDSA_SHA2_128S_TREE_BITS);
return index;
}
// Implements Algorithm 22: slh_sign function (Section 10.2.1, page 39)
bcm_infallible sign_internal_no_self_test(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len,
const uint8_t entropy[BCM_SLHDSA_SHA2_128S_N]) {
const uint8_t *sk_seed = secret_key;
const uint8_t *sk_prf = secret_key + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *pk_seed = secret_key + 2 * BCM_SLHDSA_SHA2_128S_N;
const uint8_t *pk_root = secret_key + 3 * BCM_SLHDSA_SHA2_128S_N;
// Derive randomizer R and copy it to signature
uint8_t R[BCM_SLHDSA_SHA2_128S_N];
slhdsa_thash_prfmsg(R, sk_prf, entropy, header, context, context_len, msg,
msg_len);
OPENSSL_memcpy(out_signature, R, BCM_SLHDSA_SHA2_128S_N);
// Compute message digest
uint8_t digest[SLHDSA_SHA2_128S_DIGEST_SIZE];
slhdsa_thash_hmsg(digest, R, pk_seed, pk_root, header, context, context_len,
msg, msg_len);
uint8_t fors_digest[SLHDSA_SHA2_128S_FORS_MSG_BYTES];
OPENSSL_memcpy(fors_digest, digest, SLHDSA_SHA2_128S_FORS_MSG_BYTES);
const uint64_t idx_tree =
load_tree_index(digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES);
uint32_t idx_leaf = CRYPTO_load_u16_be(
digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES + SLHDSA_SHA2_128S_TREE_BYTES);
idx_leaf &= (~(uint32_t)0) >> (32 - SLHDSA_SHA2_128S_LEAF_BITS);
uint8_t addr[32] = {0};
slhdsa_set_tree_addr(addr, idx_tree);
slhdsa_set_type(addr, SLHDSA_SHA2_128S_ADDR_TYPE_FORSTREE);
slhdsa_set_keypair_addr(addr, idx_leaf);
slhdsa_fors_sign(out_signature + BCM_SLHDSA_SHA2_128S_N, fors_digest, sk_seed,
pk_seed, addr);
uint8_t pk_fors[BCM_SLHDSA_SHA2_128S_N];
slhdsa_fors_pk_from_sig(pk_fors, out_signature + BCM_SLHDSA_SHA2_128S_N,
fors_digest, pk_seed, addr);
slhdsa_ht_sign(
out_signature + BCM_SLHDSA_SHA2_128S_N + SLHDSA_SHA2_128S_FORS_BYTES,
pk_fors, idx_tree, idx_leaf, sk_seed, pk_seed);
return bcm_infallible::approved;
}
bcm_status verify_internal(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len) {
if (signature_len != BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES) {
return bcm_status::failure;
}
const uint8_t *pk_seed = public_key;
const uint8_t *pk_root = public_key + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *r = signature;
const uint8_t *sig_fors = signature + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *sig_ht = sig_fors + SLHDSA_SHA2_128S_FORS_BYTES;
uint8_t digest[SLHDSA_SHA2_128S_DIGEST_SIZE];
slhdsa_thash_hmsg(digest, r, pk_seed, pk_root, header, context, context_len,
msg, msg_len);
uint8_t fors_digest[SLHDSA_SHA2_128S_FORS_MSG_BYTES];
OPENSSL_memcpy(fors_digest, digest, SLHDSA_SHA2_128S_FORS_MSG_BYTES);
const uint64_t idx_tree =
load_tree_index(digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES);
uint32_t idx_leaf = CRYPTO_load_u16_be(
digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES + SLHDSA_SHA2_128S_TREE_BYTES);
idx_leaf &= (~(uint32_t)0) >> (32 - SLHDSA_SHA2_128S_LEAF_BITS);
uint8_t addr[32] = {0};
slhdsa_set_tree_addr(addr, idx_tree);
slhdsa_set_type(addr, SLHDSA_SHA2_128S_ADDR_TYPE_FORSTREE);
slhdsa_set_keypair_addr(addr, idx_leaf);
uint8_t pk_fors[BCM_SLHDSA_SHA2_128S_N];
slhdsa_fors_pk_from_sig(pk_fors, sig_fors, fors_digest, pk_seed, addr);
if (!slhdsa_ht_verify(sig_ht, pk_fors, idx_tree, idx_leaf, pk_root,
pk_seed)) {
return bcm_status::failure;
}
return bcm_status::approved;
}
namespace fips {
#include "fips_known_values.inc"
static int keygen_self_test() {
uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N] = {0};
uint8_t pub[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES];
uint8_t priv[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES];
generate_key_from_seed_no_self_test(pub, priv, seed);
static_assert(sizeof(kExpectedPublicKey) == sizeof(pub));
static_assert(sizeof(kExpectedPrivateKey) == sizeof(priv));
if (!BORINGSSL_check_test(kExpectedPublicKey, pub, sizeof(pub),
"SLH-DSA public key") ||
!BORINGSSL_check_test(kExpectedPrivateKey, priv, sizeof(priv),
"SLH-DSA private key")) {
return 0;
}
return 1;
}
static int sign_self_test() {
uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN] = {0};
uint8_t entropy[BCM_SLHDSA_SHA2_128S_N] = {0};
uint8_t sig[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES];
sign_internal_no_self_test(sig, kExpectedPrivateKey, header, nullptr, 0,
nullptr, 0, entropy);
uint8_t digest[32];
SHA256(sig, sizeof(sig), digest);
static_assert(sizeof(kExpectedSignatureSHA256) == sizeof(digest));
if (!BORINGSSL_check_test(kExpectedSignatureSHA256, digest, sizeof(digest),
"SLH-DSA signature")) {
return 0;
}
return 1;
}
static int verify_self_test() {
uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN] = {0};
return verify_internal(kExpectedSignature, sizeof(kExpectedSignature),
kExpectedPublicKey, header, nullptr, 0, nullptr,
0) == bcm_status::approved;
}
#if defined(BORINGSSL_FIPS)
DEFINE_STATIC_ONCE(g_slhdsa_keygen_self_test_once)
void ensure_keygen_self_test(void) {
CRYPTO_once(g_slhdsa_keygen_self_test_once_bss_get(), []() {
if (!keygen_self_test()) {
BORINGSSL_FIPS_abort();
}
});
}
DEFINE_STATIC_ONCE(g_slhdsa_sign_self_test_once)
void ensure_sign_self_test(void) {
CRYPTO_once(g_slhdsa_sign_self_test_once_bss_get(), []() {
if (!sign_self_test()) {
BORINGSSL_FIPS_abort();
}
});
}
DEFINE_STATIC_ONCE(g_slhdsa_verify_self_test_once)
void ensure_verify_self_test(void) {
CRYPTO_once(g_slhdsa_verify_self_test_once_bss_get(), []() {
if (!verify_self_test()) {
BORINGSSL_FIPS_abort();
}
});
}
#else
void ensure_keygen_self_test(void) {}
void ensure_sign_self_test(void) {}
void ensure_verify_self_test(void) {}
#endif
} // namespace fips
} // namespace
bcm_infallible BCM_slhdsa_sha2_128s_generate_key_from_seed(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]) {
fips::ensure_keygen_self_test();
return generate_key_from_seed_no_self_test(out_public_key, out_secret_key,
seed);
}
bcm_status BCM_slhdsa_sha2_128s_generate_key_from_seed_fips(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]) {
if (out_public_key == nullptr || out_secret_key == nullptr) {
return bcm_status::failure;
}
BCM_slhdsa_sha2_128s_generate_key_from_seed(out_public_key, out_secret_key,
seed);
return bcm_status::approved;
}
bcm_infallible BCM_slhdsa_sha2_128s_generate_key(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]) {
uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(seed, 3 * BCM_SLHDSA_SHA2_128S_N);
return BCM_slhdsa_sha2_128s_generate_key_from_seed(out_public_key,
out_private_key, seed);
}
bcm_status BCM_slhdsa_sha2_128s_generate_key_fips(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]) {
if (out_public_key == nullptr || out_private_key == nullptr) {
return bcm_status::failure;
}
BCM_slhdsa_sha2_128s_generate_key(out_public_key, out_private_key);
return bcm_status::approved;
}
bcm_infallible BCM_slhdsa_sha2_128s_public_from_private(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]) {
OPENSSL_memcpy(out_public_key, private_key + 2 * BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N * 2);
return bcm_infallible::approved;
}
bcm_status BCM_slhdsa_sha2_128s_sign(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
// Construct header for M' as specified in Algorithm 22
uint8_t M_prime_header[2];
M_prime_header[0] = 0; // domain separator for pure signing
M_prime_header[1] = (uint8_t)context_len;
uint8_t entropy[BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(entropy, sizeof(entropy));
BCM_slhdsa_sha2_128s_sign_internal(out_signature, private_key, M_prime_header,
context, context_len, msg, msg_len,
entropy);
return bcm_status::approved;
}
static int slhdsa_get_context_and_oid(uint8_t *out_context_and_oid,
size_t *out_context_and_oid_len,
size_t max_out_context_and_oid,
const uint8_t *context,
size_t context_len, int hash_nid,
size_t hashed_msg_len) {
const uint8_t *oid;
size_t oid_len;
size_t expected_hash_len;
switch (hash_nid) {
case NID_sha256:
oid = kSHA256OID;
oid_len = sizeof(kSHA256OID);
static_assert(sizeof(kSHA256OID) <= MAX_OID_LENGTH, "");
expected_hash_len = 32;
break;
// The SLH-DSA spec only lists SHA-256 and SHA-512. This function also
// supports SHA-384, which is non-standard.
case NID_sha384:
oid = kSHA384OID;
oid_len = sizeof(kSHA384OID);
static_assert(sizeof(kSHA384OID) <= MAX_OID_LENGTH, "");
expected_hash_len = 48;
break;
// If adding a hash function with a larger `oid_len`, update the size of
// `context_and_oid` in the callers.
default:
return 0;
}
if (hashed_msg_len != expected_hash_len) {
return 0;
}
*out_context_and_oid_len = context_len + oid_len;
if (*out_context_and_oid_len > max_out_context_and_oid) {
return 0;
}
OPENSSL_memcpy(out_context_and_oid, context, context_len);
OPENSSL_memcpy(out_context_and_oid + context_len, oid, oid_len);
return 1;
}
bcm_infallible BCM_slhdsa_sha2_128s_sign_internal(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len,
const uint8_t entropy[BCM_SLHDSA_SHA2_128S_N]) {
fips::ensure_sign_self_test();
return sign_internal_no_self_test(out_signature, secret_key, header, context,
context_len, msg, msg_len, entropy);
}
bcm_status BCM_slhdsa_sha2_128s_prehash_sign(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid,
const uint8_t *context, size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
uint8_t M_prime_header[2];
M_prime_header[0] = 1; // domain separator for prehashed signing
M_prime_header[1] = (uint8_t)context_len;
uint8_t context_and_oid[MAX_CONTEXT_LENGTH + MAX_OID_LENGTH];
size_t context_and_oid_len;
if (!slhdsa_get_context_and_oid(context_and_oid, &context_and_oid_len,
sizeof(context_and_oid), context, context_len,
hash_nid, hashed_msg_len)) {
return bcm_status::failure;
}
uint8_t entropy[BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(entropy, sizeof(entropy));
BCM_slhdsa_sha2_128s_sign_internal(out_signature, private_key, M_prime_header,
context_and_oid, context_and_oid_len,
hashed_msg, hashed_msg_len, entropy);
return bcm_status::approved;
}
// Implements Algorithm 24: slh_verify function (Section 10.3, page 41)
bcm_status BCM_slhdsa_sha2_128s_verify(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
// Construct header for M' as specified in Algorithm 24
uint8_t M_prime_header[2];
M_prime_header[0] = 0; // domain separator for pure verification
M_prime_header[1] = (uint8_t)context_len;
return BCM_slhdsa_sha2_128s_verify_internal(
signature, signature_len, public_key, M_prime_header, context,
context_len, msg, msg_len);
}
bcm_status BCM_slhdsa_sha2_128s_prehash_verify(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid,
const uint8_t *context, size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
uint8_t M_prime_header[2];
M_prime_header[0] = 1; // domain separator for prehashed verification
M_prime_header[1] = (uint8_t)context_len;
uint8_t context_and_oid[MAX_CONTEXT_LENGTH + MAX_OID_LENGTH];
size_t context_and_oid_len;
if (!slhdsa_get_context_and_oid(context_and_oid, &context_and_oid_len,
sizeof(context_and_oid), context, context_len,
hash_nid, hashed_msg_len)) {
return bcm_status::failure;
}
return BCM_slhdsa_sha2_128s_verify_internal(
signature, signature_len, public_key, M_prime_header, context_and_oid,
context_and_oid_len, hashed_msg, hashed_msg_len);
}
bcm_status BCM_slhdsa_sha2_128s_verify_internal(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len) {
fips::ensure_verify_self_test();
return verify_internal(signature, signature_len, public_key, header, context,
context_len, msg, msg_len);
}
int boringssl_self_test_slhdsa() {
return fips::keygen_self_test() && fips::sign_self_test() &&
fips::verify_self_test();
}