| // Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/aead.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../aes/internal.h" |
| #include "../delocate.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| struct ccm128_context { |
| block128_f block; |
| ctr128_f ctr; |
| unsigned M, L; |
| }; |
| |
| struct ccm128_state { |
| alignas(16) uint8_t nonce[16]; |
| alignas(16) uint8_t cmac[16]; |
| }; |
| |
| static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key, |
| block128_f block, ctr128_f ctr, unsigned M, |
| unsigned L) { |
| if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) { |
| return 0; |
| } |
| ctx->block = block; |
| ctx->ctr = ctr; |
| ctx->M = M; |
| ctx->L = L; |
| return 1; |
| } |
| |
| static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) { |
| return ctx->L >= sizeof(size_t) ? SIZE_MAX |
| : (((size_t)1) << (ctx->L * 8)) - 1; |
| } |
| |
| static int ccm128_init_state(const struct ccm128_context *ctx, |
| struct ccm128_state *state, const AES_KEY *key, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *aad, size_t aad_len, |
| size_t plaintext_len) { |
| const block128_f block = ctx->block; |
| const unsigned M = ctx->M; |
| const unsigned L = ctx->L; |
| |
| // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. |
| if (plaintext_len > CRYPTO_ccm128_max_input(ctx) // |
| || nonce_len != 15 - L) { |
| return 0; |
| } |
| |
| // Assemble the first block for computing the MAC. |
| OPENSSL_memset(state, 0, sizeof(*state)); |
| state->nonce[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); |
| if (aad_len != 0) { |
| state->nonce[0] |= 0x40; // Set AAD Flag |
| } |
| OPENSSL_memcpy(&state->nonce[1], nonce, nonce_len); |
| for (unsigned i = 0; i < L; i++) { |
| state->nonce[15 - i] = (uint8_t)(plaintext_len >> (8 * i)); |
| } |
| |
| (*block)(state->nonce, state->cmac, key); |
| size_t blocks = 1; |
| |
| if (aad_len != 0) { |
| unsigned i; |
| // Cast to u64 to avoid the compiler complaining about invalid shifts. |
| uint64_t aad_len_u64 = aad_len; |
| if (aad_len_u64 < 0x10000 - 0x100) { |
| state->cmac[0] ^= (uint8_t)(aad_len_u64 >> 8); |
| state->cmac[1] ^= (uint8_t)aad_len_u64; |
| i = 2; |
| } else if (aad_len_u64 <= 0xffffffff) { |
| state->cmac[0] ^= 0xff; |
| state->cmac[1] ^= 0xfe; |
| state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 24); |
| state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 16); |
| state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 8); |
| state->cmac[5] ^= (uint8_t)aad_len_u64; |
| i = 6; |
| } else { |
| state->cmac[0] ^= 0xff; |
| state->cmac[1] ^= 0xff; |
| state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 56); |
| state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 48); |
| state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 40); |
| state->cmac[5] ^= (uint8_t)(aad_len_u64 >> 32); |
| state->cmac[6] ^= (uint8_t)(aad_len_u64 >> 24); |
| state->cmac[7] ^= (uint8_t)(aad_len_u64 >> 16); |
| state->cmac[8] ^= (uint8_t)(aad_len_u64 >> 8); |
| state->cmac[9] ^= (uint8_t)aad_len_u64; |
| i = 10; |
| } |
| |
| do { |
| for (; i < 16 && aad_len != 0; i++) { |
| state->cmac[i] ^= *aad; |
| aad++; |
| aad_len--; |
| } |
| (*block)(state->cmac, state->cmac, key); |
| blocks++; |
| i = 0; |
| } while (aad_len != 0); |
| } |
| |
| // Per RFC 3610, section 2.6, the total number of block cipher operations done |
| // must not exceed 2^61. There are two block cipher operations remaining per |
| // message block, plus one block at the end to encrypt the MAC. |
| size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; |
| if (plaintext_len + 15 < plaintext_len || |
| remaining_blocks + blocks < blocks || |
| (uint64_t)remaining_blocks + blocks > UINT64_C(1) << 61) { |
| return 0; |
| } |
| |
| // Assemble the first block for encrypting and decrypting. The bottom |L| |
| // bytes are replaced with a counter and all bit the encoding of |L| is |
| // cleared in the first byte. |
| state->nonce[0] &= 7; |
| return 1; |
| } |
| |
| static int ccm128_encrypt(const struct ccm128_context *ctx, |
| struct ccm128_state *state, const AES_KEY *key, |
| uint8_t *out, const uint8_t *in, size_t len) { |
| // The counter for encryption begins at one. |
| for (unsigned i = 0; i < ctx->L; i++) { |
| state->nonce[15 - i] = 0; |
| } |
| state->nonce[15] = 1; |
| |
| uint8_t partial_buf[16]; |
| unsigned num = 0; |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce, partial_buf, |
| &num, ctx->ctr); |
| return 1; |
| } |
| |
| static int ccm128_compute_mac(const struct ccm128_context *ctx, |
| struct ccm128_state *state, const AES_KEY *key, |
| uint8_t *out_tag, size_t tag_len, |
| const uint8_t *in, size_t len) { |
| block128_f block = ctx->block; |
| if (tag_len != ctx->M) { |
| return 0; |
| } |
| |
| // Incorporate |in| into the MAC. |
| while (len >= 16) { |
| CRYPTO_xor16(state->cmac, state->cmac, in); |
| (*block)(state->cmac, state->cmac, key); |
| in += 16; |
| len -= 16; |
| } |
| if (len > 0) { |
| for (size_t i = 0; i < len; i++) { |
| state->cmac[i] ^= in[i]; |
| } |
| (*block)(state->cmac, state->cmac, key); |
| } |
| |
| // Encrypt the MAC with counter zero. |
| for (unsigned i = 0; i < ctx->L; i++) { |
| state->nonce[15 - i] = 0; |
| } |
| alignas(16) uint8_t tmp[16]; |
| (*block)(state->nonce, tmp, key); |
| CRYPTO_xor16(state->cmac, state->cmac, tmp); |
| |
| OPENSSL_memcpy(out_tag, state->cmac, tag_len); |
| return 1; |
| } |
| |
| static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx, |
| const AES_KEY *key, uint8_t *out, |
| uint8_t *out_tag, size_t tag_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t len, |
| const uint8_t *aad, size_t aad_len) { |
| struct ccm128_state state; |
| return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
| len) && |
| ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && |
| ccm128_encrypt(ctx, &state, key, out, in, len); |
| } |
| |
| static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx, |
| const AES_KEY *key, uint8_t *out, |
| uint8_t *out_tag, size_t tag_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t len, |
| const uint8_t *aad, size_t aad_len) { |
| struct ccm128_state state; |
| return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
| len) && |
| ccm128_encrypt(ctx, &state, key, out, in, len) && |
| ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); |
| } |
| |
| #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16 |
| |
| namespace { |
| struct aead_aes_ccm_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| struct ccm128_context ccm; |
| }; |
| } // namespace |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
| sizeof(struct aead_aes_ccm_ctx), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_ccm_ctx), |
| "AEAD state has insufficient alignment"); |
| |
| static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, unsigned M, |
| unsigned L) { |
| assert(M == EVP_AEAD_max_overhead(ctx->aead)); |
| assert(M == EVP_AEAD_max_tag_len(ctx->aead)); |
| assert(15 - L == EVP_AEAD_nonce_length(ctx->aead)); |
| |
| if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; // EVP_AEAD_CTX_init should catch this. |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = M; |
| } |
| |
| if (tag_len != M) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; |
| |
| block128_f block; |
| ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len); |
| ctx->tag_len = tag_len; |
| if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {} |
| |
| static int aead_aes_ccm_seal_scatter( |
| const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
| size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
| size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
| size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_ccm_ctx *ccm_ctx = |
| (struct aead_aes_ccm_ctx *)&ctx->state; |
| |
| if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_tag_len < ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag, |
| ctx->tag_len, nonce, nonce_len, in, in_len, ad, |
| ad_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| *out_tag_len = ctx->tag_len; |
| AEAD_CCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *in_tag, size_t in_tag_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_ccm_ctx *ccm_ctx = |
| (struct aead_aes_ccm_ctx *)&ctx->state; |
| |
| if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (in_tag_len != ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; |
| assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN); |
| if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag, |
| ctx->tag_len, nonce, nonce_len, in, in_len, ad, |
| ad_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| AEAD_CCM_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = 13; |
| out->overhead = 4; |
| out->max_tag_len = 4; |
| |
| out->init = aead_aes_ccm_bluetooth_init; |
| out->cleanup = aead_aes_ccm_cleanup; |
| out->seal_scatter = aead_aes_ccm_seal_scatter; |
| out->open_gather = aead_aes_ccm_open_gather; |
| } |
| |
| static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = 13; |
| out->overhead = 8; |
| out->max_tag_len = 8; |
| |
| out->init = aead_aes_ccm_bluetooth_8_init; |
| out->cleanup = aead_aes_ccm_cleanup; |
| out->seal_scatter = aead_aes_ccm_seal_scatter; |
| out->open_gather = aead_aes_ccm_open_gather; |
| } |
| |
| static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2); |
| } |
| |
| DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) { |
| memset(out, 0, sizeof(EVP_AEAD)); |
| |
| out->key_len = 16; |
| out->nonce_len = 13; |
| out->overhead = 16; |
| out->max_tag_len = 16; |
| |
| out->init = aead_aes_ccm_matter_init; |
| out->cleanup = aead_aes_ccm_cleanup; |
| out->seal_scatter = aead_aes_ccm_seal_scatter; |
| out->open_gather = aead_aes_ccm_open_gather; |
| } |