| // Copyright 2014 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| #include <openssl/span.h> |
| |
| #include "../fipsmodule/cipher/internal.h" |
| #include "../internal.h" |
| #include "../mem_internal.h" |
| #include "internal.h" |
| |
| |
| typedef struct { |
| EVP_CIPHER_CTX cipher_ctx; |
| HMAC_CTX *hmac_ctx; |
| // mac_key is the portion of the key used for the MAC. It is retained |
| // separately for the constant-time CBC code. |
| uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| uint8_t mac_key_len; |
| // implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit |
| // IV. |
| char implicit_iv; |
| } AEAD_TLS_CTX; |
| |
| static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t"); |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)nullptr)->state) >= sizeof(AEAD_TLS_CTX), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX), |
| "AEAD state has insufficient alignment"); |
| |
| static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); |
| HMAC_CTX_free(tls_ctx->hmac_ctx); |
| } |
| |
| static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, |
| size_t tag_len, enum evp_aead_direction_t dir, |
| const EVP_CIPHER *cipher, const EVP_MD *md, |
| char implicit_iv) { |
| if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && tag_len != EVP_MD_size(md)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE); |
| return 0; |
| } |
| |
| if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; |
| } |
| |
| size_t mac_key_len = EVP_MD_size(md); |
| size_t enc_key_len = EVP_CIPHER_key_length(cipher); |
| assert(mac_key_len + enc_key_len + |
| (implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) == |
| key_len); |
| |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| tls_ctx->hmac_ctx = HMAC_CTX_new(); |
| if (!tls_ctx->hmac_ctx) { |
| return 0; |
| } |
| EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); |
| assert(mac_key_len <= EVP_MAX_MD_SIZE); |
| OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len); |
| tls_ctx->mac_key_len = (uint8_t)mac_key_len; |
| tls_ctx->implicit_iv = implicit_iv; |
| |
| if (!EVP_CipherInit_ex( |
| &tls_ctx->cipher_ctx, cipher, nullptr, &key[mac_key_len], |
| implicit_iv ? &key[mac_key_len + enc_key_len] : nullptr, |
| dir == evp_aead_seal) || |
| !HMAC_Init_ex(tls_ctx->hmac_ctx, key, mac_key_len, md, nullptr)) { |
| aead_tls_cleanup(ctx); |
| return 0; |
| } |
| EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); |
| |
| return 1; |
| } |
| |
| static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len) { |
| const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
| |
| const size_t hmac_len = HMAC_size(tls_ctx->hmac_ctx); |
| const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| // An overflow of |in_len + hmac_len| doesn't affect the result mod |
| // |block_size|, provided that |block_size| is a smaller power of two. |
| assert(block_size == 8 /*3DES*/ || block_size == 16 /*AES*/); |
| const size_t pad_len = block_size - ((in_len + hmac_len) & (block_size - 1)); |
| return hmac_len + pad_len; |
| } |
| |
| static int aead_tls_sealv(const EVP_AEAD_CTX *ctx, |
| bssl::Span<const CRYPTO_IOVEC> iovecs, |
| bssl::Span<uint8_t> out_tag, size_t *out_tag_len, |
| bssl::Span<const uint8_t> nonce, |
| bssl::Span<const CRYPTO_IVEC> aadvecs) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| |
| if (!tls_ctx->cipher_ctx.encrypt) { |
| // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
| return 0; |
| } |
| |
| size_t in_len = bssl::iovec::TotalLength(iovecs); |
| if (out_tag.size() < aead_tls_tag_len(ctx, in_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce.size() != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| size_t ad_len = bssl::iovec::TotalLength(aadvecs); |
| if (ad_len != 13 - 2 /* length bytes */) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| // To allow for CBC mode which changes cipher length, |ad| doesn't include the |
| // length for legacy ciphers. |
| uint8_t ad_extra[2]; |
| CRYPTO_store_u16_be(ad_extra, static_cast<uint16_t>(in_len)); |
| |
| // Compute the MAC. This must be first in case the operation is being done |
| // in-place. |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| if (!HMAC_Init_ex(tls_ctx->hmac_ctx, nullptr, 0, nullptr, nullptr)) { |
| return 0; |
| } |
| for (const CRYPTO_IVEC &aadvec : aadvecs) { |
| if (!HMAC_Update(tls_ctx->hmac_ctx, aadvec.in, aadvec.len)) { |
| return 0; |
| } |
| } |
| if (!HMAC_Update(tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra))) { |
| return 0; |
| } |
| for (const CRYPTO_IOVEC &iovec : iovecs) { |
| if (!HMAC_Update(tls_ctx->hmac_ctx, iovec.in, iovec.len)) { |
| return 0; |
| } |
| } |
| unsigned mac_len; |
| if (!HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len)) { |
| return 0; |
| } |
| |
| // Configure the explicit IV. |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
| if (!tls_ctx->implicit_iv && |
| !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr, |
| nonce.data())) { |
| return 0; |
| } |
| |
| size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| assert(block_size == 8 /*3DES*/ || block_size == 16 /*AES*/); |
| |
| // Encrypt the input. |
| size_t len = 0; |
| size_t tag_len = 0; |
| if (!bssl::iovec::ForEachBlockRange_Dynamic</*WriteOut=*/true>( |
| block_size, iovecs, |
| [&](const uint8_t *in, uint8_t *out, size_t chunk_len) { |
| // Complete block(s). |
| size_t out_len; |
| if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len, |
| chunk_len, in, chunk_len)) { |
| return false; |
| } |
| assert(out_len == chunk_len); |
| len += out_len; |
| return true; |
| }, |
| [&](const uint8_t *in, uint8_t *out, size_t chunk_len) { |
| // Final chunk, possibly with a partial block. |
| size_t out_len; |
| if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len, |
| chunk_len, in, chunk_len)) { |
| return false; |
| } |
| len += out_len; |
| size_t remaining = chunk_len - out_len; |
| assert(remaining < block_size); |
| if (remaining == 0) { |
| return true; |
| } |
| |
| // Feed the MAC into the cipher in two steps. First complete the |
| // final partial block from encrypting the input and split the |
| // result between |out| and |out_tag|. Then feed the rest. |
| const size_t early_mac_len = block_size - remaining; |
| assert(early_mac_len < block_size); |
| assert(len + block_size - early_mac_len == in_len); |
| uint8_t buf[EVP_MAX_BLOCK_LENGTH]; |
| size_t buf_len; |
| if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, buf, &buf_len, |
| sizeof(buf), mac, early_mac_len)) { |
| return false; |
| } |
| assert(buf_len == block_size); |
| OPENSSL_memcpy(out + out_len, buf, remaining); |
| OPENSSL_memcpy(out_tag.data(), buf + remaining, early_mac_len); |
| tag_len = early_mac_len; |
| return true; |
| })) { |
| return 0; |
| } |
| |
| if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag.data() + tag_len, |
| &len, out_tag.size() - tag_len, mac + tag_len, |
| mac_len - tag_len)) { |
| return 0; |
| } |
| tag_len += len; |
| |
| // Compute padding and feed that into the cipher. |
| uint8_t padding[256]; |
| unsigned padding_len = block_size - ((in_len + mac_len) & (block_size - 1)); |
| OPENSSL_memset(padding, padding_len - 1, padding_len); |
| if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag.data() + tag_len, |
| &len, out_tag.size() - tag_len, padding, |
| padding_len)) { |
| return 0; |
| } |
| tag_len += len; |
| |
| if (!EVP_EncryptFinal_ex2(&tls_ctx->cipher_ctx, out_tag.data() + tag_len, |
| &len, out_tag.size() - tag_len)) { |
| return 0; |
| } |
| assert(len == 0); // Padding is explicit. |
| assert(tag_len == aead_tls_tag_len(ctx, in_len)); |
| |
| *out_tag_len = tag_len; |
| return 1; |
| } |
| |
| static int aead_tls_openv(const EVP_AEAD_CTX *ctx, |
| bssl::Span<const CRYPTO_IOVEC> iovecs, |
| size_t *out_total_bytes, |
| bssl::Span<const uint8_t> nonce, |
| bssl::Span<const CRYPTO_IVEC> aadvecs) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| |
| if (tls_ctx->cipher_ctx.encrypt) { |
| // Unlike a normal AEAD, a TLS AEAD may only be used in one direction. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION); |
| return 0; |
| } |
| |
| size_t in_len = bssl::iovec::TotalLength(iovecs); |
| if (in_len < HMAC_size(tls_ctx->hmac_ctx)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| if (nonce.size() != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| size_t ad_len = bssl::iovec::TotalLength(aadvecs); |
| if (ad_len != 13 - 2 /* length bytes */) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| // Configure the explicit IV. |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
| if (!tls_ctx->implicit_iv && |
| !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr, |
| nonce.data())) { |
| return 0; |
| } |
| |
| // Decrypt to get the plaintext + MAC + padding. |
| size_t total = 0; |
| size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| auto decrypt_update = [&](const uint8_t *in, uint8_t *out, size_t len) { |
| size_t out_len; |
| if (!EVP_DecryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len, len, in, |
| len)) { |
| return false; |
| } |
| CONSTTIME_SECRET(out, out_len); |
| if (out_len != len) { |
| // A byte sequence that was not a multiple of the block size was provided |
| // as ciphertext. This is generally invalid and thus should be rejected. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return false; |
| } |
| total += len; |
| return true; |
| }; |
| if (!bssl::iovec::ForEachBlockRange_Dynamic</*WriteOut=*/true>( |
| block_size, iovecs, decrypt_update, decrypt_update)) { |
| return false; |
| } |
| assert(total == in_len); |
| |
| const size_t mac_len = HMAC_size(tls_ctx->hmac_ctx); |
| |
| // Split the decrypted record into |iovecs_without_trailer| and |trailer|, |
| // based on the public lower bound of where the plaintext ends. The plaintext |
| // is followed by |mac_len| and then at most 256 bytes of padding. |
| bssl::InplaceVector<CRYPTO_IOVEC, CRYPTO_IOVEC_MAX> iovecs_without_trailer; |
| iovecs_without_trailer.CopyFrom(iovecs); |
| uint8_t trailer_buf[EVP_MAX_MD_SIZE + 256]; |
| const size_t trailer_len = std::min(in_len, mac_len + 256); |
| std::optional<bssl::Span<const uint8_t>> trailer = |
| bssl::iovec::GetAndRemoveOutSuffix( |
| bssl::Span(trailer_buf).first(trailer_len), |
| bssl::Span(iovecs_without_trailer)); |
| BSSL_CHECK(trailer.has_value()); |
| |
| // Remove CBC padding. Code from here on is timing-sensitive with respect to |
| // |padding_ok|, |trailer_minus_padding|, and derived values. |
| crypto_word_t padding_ok; |
| size_t trailer_minus_padding; |
| if (!EVP_tls_cbc_remove_padding(&padding_ok, &trailer_minus_padding, |
| trailer->data(), trailer->size(), block_size, |
| mac_len)) { |
| // Publicly invalid. This can be rejected in non-constant time. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| // If the padding is valid, |trailer->first(trailer_minus_padding)| is the |
| // last bytes of plaintext and the MAC. Otherwise, it is still large enough to |
| // extract a MAC, but it will be irrelevant. Note that |trailer_minus_padding| |
| // is secret. |
| declassify_assert(trailer_minus_padding >= mac_len); |
| size_t data_in_trailer_len = trailer_minus_padding - mac_len; |
| size_t max_data_in_trailer_len = trailer->size() - mac_len; |
| size_t data_len = total - trailer->size() + data_in_trailer_len; |
| |
| // To allow for CBC mode which changes cipher length, |ad_len| doesn't |
| // include the length for legacy ciphers. |
| uint8_t ad_extra[2]; |
| CRYPTO_store_u16_be(ad_extra, static_cast<uint16_t>(data_len)); |
| |
| // Compute the MAC and extract the one in the record. |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| size_t got_mac_len; |
| assert(EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx->md)); |
| if (!EVP_tls_cbc_digest_record( |
| tls_ctx->hmac_ctx->md, mac, &got_mac_len, ad_extra, aadvecs, |
| iovecs_without_trailer, trailer->first(max_data_in_trailer_len), |
| data_in_trailer_len, tls_ctx->mac_key, tls_ctx->mac_key_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| assert(got_mac_len == mac_len); |
| |
| uint8_t record_mac[EVP_MAX_MD_SIZE]; |
| EVP_tls_cbc_copy_mac(record_mac, mac_len, trailer->data(), |
| trailer_minus_padding, trailer->size()); |
| |
| // Perform the MAC check and the padding check in constant-time. It should be |
| // safe to simply perform the padding check first, but it would not be under a |
| // different choice of MAC location on padding failure. See |
| // EVP_tls_cbc_remove_padding. The value barrier seems to be necessary to |
| // prevent a branch in Clang. |
| crypto_word_t good = value_barrier_w( |
| constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0)); |
| good &= padding_ok; |
| if (!constant_time_declassify_w(good)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| // End of timing-sensitive code. |
| CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len)); |
| for (const CRYPTO_IOVEC &iovec : iovecs) { |
| CONSTTIME_DECLASSIFY(iovec.out, iovec.len); |
| } |
| |
| *out_total_bytes = data_len; |
| return 1; |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(), |
| EVP_sha256(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init( |
| EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, |
| enum evp_aead_direction_t dir) { |
| return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv, |
| size_t *out_iv_len) { |
| const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state; |
| const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx); |
| if (iv_len <= 1) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| *out_iv = tls_ctx->cipher_ctx.iv; |
| *out_iv_len = iv_len; |
| return 1; |
| } |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128) |
| 16, // nonce len (IV) |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_aes_128_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| nullptr, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV) |
| 0, // nonce len |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_aes_128_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { |
| SHA256_DIGEST_LENGTH + 16, // key len (SHA256 + AES128) |
| 16, // nonce len (IV) |
| 16 + SHA256_DIGEST_LENGTH, // overhead (padding + SHA256) |
| SHA256_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_aes_128_cbc_sha256_tls_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| nullptr, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256) |
| 16, // nonce len (IV) |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_aes_256_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| nullptr, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV) |
| 0, // nonce len |
| 16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_aes_256_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES) |
| 8, // nonce len (IV) |
| 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_des_ede3_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| nullptr, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV) |
| 0, // nonce len |
| 8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1) |
| SHA_DIGEST_LENGTH, // max tag length |
| |
| nullptr, // init |
| aead_des_ede3_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_openv, |
| aead_tls_sealv, |
| nullptr, // openv_detached |
| aead_tls_get_iv, // get_iv |
| aead_tls_tag_len, |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { |
| return &aead_aes_128_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_128_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { |
| return &aead_aes_128_cbc_sha256_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { |
| return &aead_aes_256_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_256_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { |
| return &aead_des_ede3_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_des_ede3_cbc_sha1_tls_implicit_iv; |
| } |