blob: c037f0425e0abfd3e45c7c07c42e44d610b71f12 [file] [log] [blame] [edit]
// Copyright 2014 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/span.h>
#include "../fipsmodule/cipher/internal.h"
#include "../internal.h"
#include "../mem_internal.h"
#include "internal.h"
typedef struct {
EVP_CIPHER_CTX cipher_ctx;
HMAC_CTX *hmac_ctx;
// mac_key is the portion of the key used for the MAC. It is retained
// separately for the constant-time CBC code.
uint8_t mac_key[EVP_MAX_MD_SIZE];
uint8_t mac_key_len;
// implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
// IV.
char implicit_iv;
} AEAD_TLS_CTX;
static_assert(EVP_MAX_MD_SIZE < 256, "mac_key_len does not fit in uint8_t");
static_assert(sizeof(((EVP_AEAD_CTX *)nullptr)->state) >= sizeof(AEAD_TLS_CTX),
"AEAD state is too small");
static_assert(alignof(union evp_aead_ctx_st_state) >= alignof(AEAD_TLS_CTX),
"AEAD state has insufficient alignment");
static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
HMAC_CTX_free(tls_ctx->hmac_ctx);
}
static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
size_t tag_len, enum evp_aead_direction_t dir,
const EVP_CIPHER *cipher, const EVP_MD *md,
char implicit_iv) {
if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && tag_len != EVP_MD_size(md)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
return 0;
}
if (key_len != EVP_AEAD_key_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
return 0;
}
size_t mac_key_len = EVP_MD_size(md);
size_t enc_key_len = EVP_CIPHER_key_length(cipher);
assert(mac_key_len + enc_key_len +
(implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0) ==
key_len);
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
tls_ctx->hmac_ctx = HMAC_CTX_new();
if (!tls_ctx->hmac_ctx) {
return 0;
}
EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
assert(mac_key_len <= EVP_MAX_MD_SIZE);
OPENSSL_memcpy(tls_ctx->mac_key, key, mac_key_len);
tls_ctx->mac_key_len = (uint8_t)mac_key_len;
tls_ctx->implicit_iv = implicit_iv;
if (!EVP_CipherInit_ex(
&tls_ctx->cipher_ctx, cipher, nullptr, &key[mac_key_len],
implicit_iv ? &key[mac_key_len + enc_key_len] : nullptr,
dir == evp_aead_seal) ||
!HMAC_Init_ex(tls_ctx->hmac_ctx, key, mac_key_len, md, nullptr)) {
aead_tls_cleanup(ctx);
return 0;
}
EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
return 1;
}
static size_t aead_tls_tag_len(const EVP_AEAD_CTX *ctx, const size_t in_len) {
const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
const size_t hmac_len = HMAC_size(tls_ctx->hmac_ctx);
const size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
// An overflow of |in_len + hmac_len| doesn't affect the result mod
// |block_size|, provided that |block_size| is a smaller power of two.
assert(block_size == 8 /*3DES*/ || block_size == 16 /*AES*/);
const size_t pad_len = block_size - ((in_len + hmac_len) & (block_size - 1));
return hmac_len + pad_len;
}
static int aead_tls_sealv(const EVP_AEAD_CTX *ctx,
bssl::Span<const CRYPTO_IOVEC> iovecs,
bssl::Span<uint8_t> out_tag, size_t *out_tag_len,
bssl::Span<const uint8_t> nonce,
bssl::Span<const CRYPTO_IVEC> aadvecs) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
if (!tls_ctx->cipher_ctx.encrypt) {
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
return 0;
}
size_t in_len = bssl::iovec::TotalLength(iovecs);
if (out_tag.size() < aead_tls_tag_len(ctx, in_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce.size() != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
size_t ad_len = bssl::iovec::TotalLength(aadvecs);
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
// To allow for CBC mode which changes cipher length, |ad| doesn't include the
// length for legacy ciphers.
uint8_t ad_extra[2];
CRYPTO_store_u16_be(ad_extra, static_cast<uint16_t>(in_len));
// Compute the MAC. This must be first in case the operation is being done
// in-place.
uint8_t mac[EVP_MAX_MD_SIZE];
if (!HMAC_Init_ex(tls_ctx->hmac_ctx, nullptr, 0, nullptr, nullptr)) {
return 0;
}
for (const CRYPTO_IVEC &aadvec : aadvecs) {
if (!HMAC_Update(tls_ctx->hmac_ctx, aadvec.in, aadvec.len)) {
return 0;
}
}
if (!HMAC_Update(tls_ctx->hmac_ctx, ad_extra, sizeof(ad_extra))) {
return 0;
}
for (const CRYPTO_IOVEC &iovec : iovecs) {
if (!HMAC_Update(tls_ctx->hmac_ctx, iovec.in, iovec.len)) {
return 0;
}
}
unsigned mac_len;
if (!HMAC_Final(tls_ctx->hmac_ctx, mac, &mac_len)) {
return 0;
}
// Configure the explicit IV.
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
if (!tls_ctx->implicit_iv &&
!EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr,
nonce.data())) {
return 0;
}
size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
assert(block_size == 8 /*3DES*/ || block_size == 16 /*AES*/);
// Encrypt the input.
size_t len = 0;
size_t tag_len = 0;
if (!bssl::iovec::ForEachBlockRange_Dynamic</*WriteOut=*/true>(
block_size, iovecs,
[&](const uint8_t *in, uint8_t *out, size_t chunk_len) {
// Complete block(s).
size_t out_len;
if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len,
chunk_len, in, chunk_len)) {
return false;
}
assert(out_len == chunk_len);
len += out_len;
return true;
},
[&](const uint8_t *in, uint8_t *out, size_t chunk_len) {
// Final chunk, possibly with a partial block.
size_t out_len;
if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len,
chunk_len, in, chunk_len)) {
return false;
}
len += out_len;
size_t remaining = chunk_len - out_len;
assert(remaining < block_size);
if (remaining == 0) {
return true;
}
// Feed the MAC into the cipher in two steps. First complete the
// final partial block from encrypting the input and split the
// result between |out| and |out_tag|. Then feed the rest.
const size_t early_mac_len = block_size - remaining;
assert(early_mac_len < block_size);
assert(len + block_size - early_mac_len == in_len);
uint8_t buf[EVP_MAX_BLOCK_LENGTH];
size_t buf_len;
if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, buf, &buf_len,
sizeof(buf), mac, early_mac_len)) {
return false;
}
assert(buf_len == block_size);
OPENSSL_memcpy(out + out_len, buf, remaining);
OPENSSL_memcpy(out_tag.data(), buf + remaining, early_mac_len);
tag_len = early_mac_len;
return true;
})) {
return 0;
}
if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag.data() + tag_len,
&len, out_tag.size() - tag_len, mac + tag_len,
mac_len - tag_len)) {
return 0;
}
tag_len += len;
// Compute padding and feed that into the cipher.
uint8_t padding[256];
unsigned padding_len = block_size - ((in_len + mac_len) & (block_size - 1));
OPENSSL_memset(padding, padding_len - 1, padding_len);
if (!EVP_EncryptUpdate_ex(&tls_ctx->cipher_ctx, out_tag.data() + tag_len,
&len, out_tag.size() - tag_len, padding,
padding_len)) {
return 0;
}
tag_len += len;
if (!EVP_EncryptFinal_ex2(&tls_ctx->cipher_ctx, out_tag.data() + tag_len,
&len, out_tag.size() - tag_len)) {
return 0;
}
assert(len == 0); // Padding is explicit.
assert(tag_len == aead_tls_tag_len(ctx, in_len));
*out_tag_len = tag_len;
return 1;
}
static int aead_tls_openv(const EVP_AEAD_CTX *ctx,
bssl::Span<const CRYPTO_IOVEC> iovecs,
size_t *out_total_bytes,
bssl::Span<const uint8_t> nonce,
bssl::Span<const CRYPTO_IVEC> aadvecs) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
if (tls_ctx->cipher_ctx.encrypt) {
// Unlike a normal AEAD, a TLS AEAD may only be used in one direction.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
return 0;
}
size_t in_len = bssl::iovec::TotalLength(iovecs);
if (in_len < HMAC_size(tls_ctx->hmac_ctx)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
if (nonce.size() != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
size_t ad_len = bssl::iovec::TotalLength(aadvecs);
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
// Configure the explicit IV.
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
if (!tls_ctx->implicit_iv &&
!EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, nullptr, nullptr, nullptr,
nonce.data())) {
return 0;
}
// Decrypt to get the plaintext + MAC + padding.
size_t total = 0;
size_t block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
auto decrypt_update = [&](const uint8_t *in, uint8_t *out, size_t len) {
size_t out_len;
if (!EVP_DecryptUpdate_ex(&tls_ctx->cipher_ctx, out, &out_len, len, in,
len)) {
return false;
}
CONSTTIME_SECRET(out, out_len);
if (out_len != len) {
// A byte sequence that was not a multiple of the block size was provided
// as ciphertext. This is generally invalid and thus should be rejected.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return false;
}
total += len;
return true;
};
if (!bssl::iovec::ForEachBlockRange_Dynamic</*WriteOut=*/true>(
block_size, iovecs, decrypt_update, decrypt_update)) {
return false;
}
assert(total == in_len);
const size_t mac_len = HMAC_size(tls_ctx->hmac_ctx);
// Split the decrypted record into |iovecs_without_trailer| and |trailer|,
// based on the public lower bound of where the plaintext ends. The plaintext
// is followed by |mac_len| and then at most 256 bytes of padding.
bssl::InplaceVector<CRYPTO_IOVEC, CRYPTO_IOVEC_MAX> iovecs_without_trailer;
iovecs_without_trailer.CopyFrom(iovecs);
uint8_t trailer_buf[EVP_MAX_MD_SIZE + 256];
const size_t trailer_len = std::min(in_len, mac_len + 256);
std::optional<bssl::Span<const uint8_t>> trailer =
bssl::iovec::GetAndRemoveOutSuffix(
bssl::Span(trailer_buf).first(trailer_len),
bssl::Span(iovecs_without_trailer));
BSSL_CHECK(trailer.has_value());
// Remove CBC padding. Code from here on is timing-sensitive with respect to
// |padding_ok|, |trailer_minus_padding|, and derived values.
crypto_word_t padding_ok;
size_t trailer_minus_padding;
if (!EVP_tls_cbc_remove_padding(&padding_ok, &trailer_minus_padding,
trailer->data(), trailer->size(), block_size,
mac_len)) {
// Publicly invalid. This can be rejected in non-constant time.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
// If the padding is valid, |trailer->first(trailer_minus_padding)| is the
// last bytes of plaintext and the MAC. Otherwise, it is still large enough to
// extract a MAC, but it will be irrelevant. Note that |trailer_minus_padding|
// is secret.
declassify_assert(trailer_minus_padding >= mac_len);
size_t data_in_trailer_len = trailer_minus_padding - mac_len;
size_t max_data_in_trailer_len = trailer->size() - mac_len;
size_t data_len = total - trailer->size() + data_in_trailer_len;
// To allow for CBC mode which changes cipher length, |ad_len| doesn't
// include the length for legacy ciphers.
uint8_t ad_extra[2];
CRYPTO_store_u16_be(ad_extra, static_cast<uint16_t>(data_len));
// Compute the MAC and extract the one in the record.
uint8_t mac[EVP_MAX_MD_SIZE];
size_t got_mac_len;
assert(EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx->md));
if (!EVP_tls_cbc_digest_record(
tls_ctx->hmac_ctx->md, mac, &got_mac_len, ad_extra, aadvecs,
iovecs_without_trailer, trailer->first(max_data_in_trailer_len),
data_in_trailer_len, tls_ctx->mac_key, tls_ctx->mac_key_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
assert(got_mac_len == mac_len);
uint8_t record_mac[EVP_MAX_MD_SIZE];
EVP_tls_cbc_copy_mac(record_mac, mac_len, trailer->data(),
trailer_minus_padding, trailer->size());
// Perform the MAC check and the padding check in constant-time. It should be
// safe to simply perform the padding check first, but it would not be under a
// different choice of MAC location on padding failure. See
// EVP_tls_cbc_remove_padding. The value barrier seems to be necessary to
// prevent a branch in Clang.
crypto_word_t good = value_barrier_w(
constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), 0));
good &= padding_ok;
if (!constant_time_declassify_w(good)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
// End of timing-sensitive code.
CONSTTIME_DECLASSIFY(&data_len, sizeof(data_len));
for (const CRYPTO_IOVEC &iovec : iovecs) {
CONSTTIME_DECLASSIFY(iovec.out, iovec.len);
}
*out_total_bytes = data_len;
return 1;
}
static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha1(), 1);
}
static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_128_cbc(),
EVP_sha256(), 0);
}
static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_aes_256_cbc(),
EVP_sha1(), 1);
}
static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
EVP_sha1(), 0);
}
static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(
EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len,
enum evp_aead_direction_t dir) {
return aead_tls_init(ctx, key, key_len, tag_len, dir, EVP_des_ede3_cbc(),
EVP_sha1(), 1);
}
static int aead_tls_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
size_t *out_iv_len) {
const AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)&ctx->state;
const size_t iv_len = EVP_CIPHER_CTX_iv_length(&tls_ctx->cipher_ctx);
if (iv_len <= 1) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
*out_iv = tls_ctx->cipher_ctx.iv;
*out_iv_len = iv_len;
return 1;
}
static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 16, // key len (SHA1 + AES128)
16, // nonce len (IV)
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_aes_128_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
nullptr, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 16 + 16, // key len (SHA1 + AES128 + IV)
0, // nonce len
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_aes_128_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
SHA256_DIGEST_LENGTH + 16, // key len (SHA256 + AES128)
16, // nonce len (IV)
16 + SHA256_DIGEST_LENGTH, // overhead (padding + SHA256)
SHA256_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_aes_128_cbc_sha256_tls_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
nullptr, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 32, // key len (SHA1 + AES256)
16, // nonce len (IV)
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_aes_256_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
nullptr, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 32 + 16, // key len (SHA1 + AES256 + IV)
0, // nonce len
16 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_aes_256_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 24, // key len (SHA1 + 3DES)
8, // nonce len (IV)
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_des_ede3_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
nullptr, // get_iv
aead_tls_tag_len,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 24 + 8, // key len (SHA1 + 3DES + IV)
0, // nonce len
8 + SHA_DIGEST_LENGTH, // overhead (padding + SHA1)
SHA_DIGEST_LENGTH, // max tag length
nullptr, // init
aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_openv,
aead_tls_sealv,
nullptr, // openv_detached
aead_tls_get_iv, // get_iv
aead_tls_tag_len,
};
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
return &aead_aes_128_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_128_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
return &aead_aes_128_cbc_sha256_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
return &aead_aes_256_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_256_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
return &aead_des_ede3_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
}