| // Copyright 2017 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/aead.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/cipher.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/sha2.h> |
| #include <openssl/span.h> |
| |
| #include "../fipsmodule/aes/internal.h" |
| #include "../fipsmodule/cipher/internal.h" |
| |
| |
| #define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH |
| #define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12 |
| |
| struct aead_aes_ctr_hmac_sha256_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| ctr128_f ctr; |
| block128_f block; |
| SHA256_CTX inner_init_state; |
| SHA256_CTX outer_init_state; |
| }; |
| |
| static_assert(sizeof(((EVP_AEAD_CTX *)nullptr)->state) >= |
| sizeof(struct aead_aes_ctr_hmac_sha256_ctx), |
| "AEAD state is too small"); |
| static_assert(alignof(union evp_aead_ctx_st_state) >= |
| alignof(struct aead_aes_ctr_hmac_sha256_ctx), |
| "AEAD state has insufficient alignment"); |
| |
| static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer, |
| const uint8_t hmac_key[32]) { |
| static const size_t hmac_key_len = 32; |
| uint8_t block[SHA256_CBLOCK]; |
| OPENSSL_memcpy(block, hmac_key, hmac_key_len); |
| OPENSSL_memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len); |
| |
| unsigned i; |
| for (i = 0; i < hmac_key_len; i++) { |
| block[i] ^= 0x36; |
| } |
| |
| SHA256_Init(out_inner); |
| SHA256_Update(out_inner, block, sizeof(block)); |
| |
| OPENSSL_memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len); |
| for (i = 0; i < hmac_key_len; i++) { |
| block[i] ^= (0x36 ^ 0x5c); |
| } |
| |
| SHA256_Init(out_outer); |
| SHA256_Update(out_outer, block, sizeof(block)); |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = |
| (struct aead_aes_ctr_hmac_sha256_ctx *)&ctx->state; |
| static const size_t hmac_key_len = 32; |
| |
| if (key_len < hmac_key_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; // EVP_AEAD_CTX_init should catch this. |
| } |
| |
| const size_t aes_key_len = key_len - hmac_key_len; |
| if (aes_key_len != 16 && aes_key_len != 32) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; // EVP_AEAD_CTX_init should catch this. |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN; |
| } |
| |
| if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| aes_ctx->ctr = aes_ctr_set_key(&aes_ctx->ks.ks, nullptr, &aes_ctx->block, key, |
| aes_key_len); |
| ctx->tag_len = tag_len; |
| hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state, |
| key + aes_key_len); |
| |
| return 1; |
| } |
| |
| static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) {} |
| |
| static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) { |
| unsigned i; |
| uint8_t bytes[8]; |
| |
| for (i = 0; i < sizeof(bytes); i++) { |
| bytes[i] = value & 0xff; |
| value >>= 8; |
| } |
| SHA256_Update(sha256, bytes, sizeof(bytes)); |
| } |
| |
| static void hmac_calculate( |
| uint8_t out[SHA256_DIGEST_LENGTH], const SHA256_CTX *inner_init_state, |
| const SHA256_CTX *outer_init_state, bssl::Span<const CRYPTO_IVEC> aadvecs, |
| const uint8_t *nonce, bssl::Span<const CRYPTO_IOVEC> iovecs, bool encrypt) { |
| size_t ad_len = bssl::iovec::TotalLength(aadvecs); |
| SHA256_CTX sha256; |
| OPENSSL_memcpy(&sha256, inner_init_state, sizeof(sha256)); |
| hmac_update_uint64(&sha256, ad_len); |
| hmac_update_uint64(&sha256, bssl::iovec::TotalLength(iovecs)); |
| SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); |
| for (const CRYPTO_IVEC &aadvec : aadvecs) { |
| SHA256_Update(&sha256, aadvec.in, aadvec.len); |
| } |
| |
| // Pad with zeros to the end of the SHA-256 block. |
| const unsigned num_padding = |
| (SHA256_CBLOCK - ((sizeof(uint64_t) * 2 + |
| EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) % |
| SHA256_CBLOCK)) % |
| SHA256_CBLOCK; |
| uint8_t padding[SHA256_CBLOCK]; |
| OPENSSL_memset(padding, 0, num_padding); |
| SHA256_Update(&sha256, padding, num_padding); |
| |
| for (const CRYPTO_IOVEC &iovec : iovecs) { |
| SHA256_Update(&sha256, encrypt ? iovec.out : iovec.in, iovec.len); |
| } |
| |
| uint8_t inner_digest[SHA256_DIGEST_LENGTH]; |
| SHA256_Final(inner_digest, &sha256); |
| |
| OPENSSL_memcpy(&sha256, outer_init_state, sizeof(sha256)); |
| SHA256_Update(&sha256, inner_digest, sizeof(inner_digest)); |
| SHA256_Final(out, &sha256); |
| } |
| |
| static void aead_aes_ctr_hmac_sha256_crypt( |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, |
| bssl::Span<const CRYPTO_IOVEC> iovecs, const uint8_t *nonce) { |
| uint8_t partial_block_buffer[AES_BLOCK_SIZE]; |
| unsigned partial_block_offset = 0; |
| OPENSSL_memset(partial_block_buffer, 0, sizeof(partial_block_buffer)); |
| |
| uint8_t counter[AES_BLOCK_SIZE]; |
| OPENSSL_memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); |
| OPENSSL_memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4); |
| |
| for (const CRYPTO_IOVEC &iovec : iovecs) { |
| CRYPTO_ctr128_encrypt_ctr32(iovec.in, iovec.out, iovec.len, &aes_ctx->ks.ks, |
| counter, partial_block_buffer, |
| &partial_block_offset, aes_ctx->ctr); |
| } |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_sealv( |
| const EVP_AEAD_CTX *ctx, bssl::Span<const CRYPTO_IOVEC> iovecs, |
| bssl::Span<uint8_t> out_tag, size_t *out_tag_len, |
| bssl::Span<const uint8_t> nonce, bssl::Span<const CRYPTO_IVEC> aadvecs) { |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = |
| (struct aead_aes_ctr_hmac_sha256_ctx *)&ctx->state; |
| const uint64_t in_len_64 = bssl::iovec::TotalLength(iovecs); |
| |
| if (in_len_64 >= (UINT64_C(1) << 32) * AES_BLOCK_SIZE) { |
| // This input is so large it would overflow the 32-bit block counter. |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (out_tag.size() < ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce.size() != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| aead_aes_ctr_hmac_sha256_crypt(aes_ctx, iovecs, nonce.data()); |
| |
| uint8_t hmac_result[SHA256_DIGEST_LENGTH]; |
| hmac_calculate(hmac_result, &aes_ctx->inner_init_state, |
| &aes_ctx->outer_init_state, aadvecs, nonce.data(), iovecs, |
| /*encrypt=*/true); |
| CopyToPrefix(bssl::Span(hmac_result).first(ctx->tag_len), out_tag); |
| *out_tag_len = ctx->tag_len; |
| |
| return 1; |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_openv_detached( |
| const EVP_AEAD_CTX *ctx, bssl::Span<const CRYPTO_IOVEC> iovecs, |
| bssl::Span<const uint8_t> nonce, bssl::Span<const uint8_t> in_tag, |
| bssl::Span<const CRYPTO_IVEC> aadvecs) { |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = |
| (struct aead_aes_ctr_hmac_sha256_ctx *)&ctx->state; |
| |
| if (in_tag.size() != ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| if (nonce.size() != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| uint8_t hmac_result[SHA256_DIGEST_LENGTH]; |
| hmac_calculate(hmac_result, &aes_ctx->inner_init_state, |
| &aes_ctx->outer_init_state, aadvecs, nonce.data(), iovecs, |
| /*encrypt=*/false); |
| if (CRYPTO_memcmp(hmac_result, in_tag.data(), ctx->tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| aead_aes_ctr_hmac_sha256_crypt(aes_ctx, iovecs, nonce.data()); |
| |
| return 1; |
| } |
| |
| static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = { |
| 16 /* AES key */ + 32 /* HMAC key */, |
| 12, // nonce length |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // overhead |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // max tag length |
| |
| aead_aes_ctr_hmac_sha256_init, |
| nullptr /* init_with_direction */, |
| aead_aes_ctr_hmac_sha256_cleanup, |
| nullptr /* openv */, |
| aead_aes_ctr_hmac_sha256_sealv, |
| aead_aes_ctr_hmac_sha256_openv_detached, |
| nullptr /* get_iv */, |
| nullptr /* tag_len */, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = { |
| 32 /* AES key */ + 32 /* HMAC key */, |
| 12, // nonce length |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // overhead |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // max tag length |
| |
| aead_aes_ctr_hmac_sha256_init, |
| nullptr /* init_with_direction */, |
| aead_aes_ctr_hmac_sha256_cleanup, |
| nullptr /* openv */, |
| aead_aes_ctr_hmac_sha256_sealv, |
| aead_aes_ctr_hmac_sha256_openv_detached, |
| nullptr /* get_iv */, |
| nullptr /* tag_len */, |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) { |
| return &aead_aes_128_ctr_hmac_sha256; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) { |
| return &aead_aes_256_ctr_hmac_sha256; |
| } |