blob: 960836e0ba7ff8c1252c6e5c86cc066ef9ae03b9 [file] [log] [blame]
/* Copyright 2014 The BoringSSL Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/base.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include "../../internal.h"
#include "../bcm_interface.h"
#include "address.h"
#include "fors.h"
#include "merkle.h"
#include "params.h"
#include "thash.h"
// The OBJECT IDENTIFIER header is also included in these values, per the spec.
static const uint8_t kSHA256OID[] = {0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
0x65, 0x03, 0x04, 0x02, 0x01};
static const uint8_t kSHA384OID[] = {0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
0x65, 0x03, 0x04, 0x02, 0x02};
#define MAX_OID_LENGTH 11
#define MAX_CONTEXT_LENGTH 255
bcm_infallible BCM_slhdsa_sha2_128s_generate_key_from_seed(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]) {
// Initialize SK.seed || SK.prf || PK.seed from seed.
OPENSSL_memcpy(out_secret_key, seed, 3 * BCM_SLHDSA_SHA2_128S_N);
// Initialize PK.seed from seed.
OPENSSL_memcpy(out_public_key, seed + 2 * BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N);
uint8_t addr[32] = {0};
slhdsa_set_layer_addr(addr, SLHDSA_SHA2_128S_D - 1);
// Set PK.root
slhdsa_treehash(out_public_key + BCM_SLHDSA_SHA2_128S_N, out_secret_key, 0,
SLHDSA_SHA2_128S_TREE_HEIGHT, out_public_key, addr);
OPENSSL_memcpy(out_secret_key + 3 * BCM_SLHDSA_SHA2_128S_N,
out_public_key + BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N);
return bcm_infallible::approved;
}
bcm_infallible BCM_slhdsa_sha2_128s_generate_key(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
uint8_t out_private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]) {
uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(seed, 3 * BCM_SLHDSA_SHA2_128S_N);
BCM_slhdsa_sha2_128s_generate_key_from_seed(out_public_key, out_private_key,
seed);
return bcm_infallible::approved;
}
bcm_infallible BCM_slhdsa_sha2_128s_public_from_private(
uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]) {
OPENSSL_memcpy(out_public_key, private_key + 2 * BCM_SLHDSA_SHA2_128S_N,
BCM_SLHDSA_SHA2_128S_N * 2);
return bcm_infallible::approved;
}
// Note that this overreads by a byte. This is fine in the context that it's
// used.
static uint64_t load_tree_index(const uint8_t in[8]) {
static_assert(SLHDSA_SHA2_128S_TREE_BYTES == 7,
"This code needs to be updated");
uint64_t index = CRYPTO_load_u64_be(in);
index >>= 8;
index &= (~(uint64_t)0) >> (64 - SLHDSA_SHA2_128S_TREE_BITS);
return index;
}
// Implements Algorithm 22: slh_sign function (Section 10.2.1, page 39)
bcm_infallible BCM_slhdsa_sha2_128s_sign_internal(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len,
const uint8_t entropy[BCM_SLHDSA_SHA2_128S_N]) {
const uint8_t *sk_seed = secret_key;
const uint8_t *sk_prf = secret_key + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *pk_seed = secret_key + 2 * BCM_SLHDSA_SHA2_128S_N;
const uint8_t *pk_root = secret_key + 3 * BCM_SLHDSA_SHA2_128S_N;
// Derive randomizer R and copy it to signature
uint8_t R[BCM_SLHDSA_SHA2_128S_N];
slhdsa_thash_prfmsg(R, sk_prf, entropy, header, context, context_len, msg,
msg_len);
OPENSSL_memcpy(out_signature, R, BCM_SLHDSA_SHA2_128S_N);
// Compute message digest
uint8_t digest[SLHDSA_SHA2_128S_DIGEST_SIZE];
slhdsa_thash_hmsg(digest, R, pk_seed, pk_root, header, context, context_len,
msg, msg_len);
uint8_t fors_digest[SLHDSA_SHA2_128S_FORS_MSG_BYTES];
OPENSSL_memcpy(fors_digest, digest, SLHDSA_SHA2_128S_FORS_MSG_BYTES);
const uint64_t idx_tree =
load_tree_index(digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES);
uint32_t idx_leaf = CRYPTO_load_u16_be(
digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES + SLHDSA_SHA2_128S_TREE_BYTES);
idx_leaf &= (~(uint32_t)0) >> (32 - SLHDSA_SHA2_128S_LEAF_BITS);
uint8_t addr[32] = {0};
slhdsa_set_tree_addr(addr, idx_tree);
slhdsa_set_type(addr, SLHDSA_SHA2_128S_ADDR_TYPE_FORSTREE);
slhdsa_set_keypair_addr(addr, idx_leaf);
slhdsa_fors_sign(out_signature + BCM_SLHDSA_SHA2_128S_N, fors_digest, sk_seed,
pk_seed, addr);
uint8_t pk_fors[BCM_SLHDSA_SHA2_128S_N];
slhdsa_fors_pk_from_sig(pk_fors, out_signature + BCM_SLHDSA_SHA2_128S_N,
fors_digest, pk_seed, addr);
slhdsa_ht_sign(
out_signature + BCM_SLHDSA_SHA2_128S_N + SLHDSA_SHA2_128S_FORS_BYTES,
pk_fors, idx_tree, idx_leaf, sk_seed, pk_seed);
return bcm_infallible::approved;
}
bcm_status BCM_slhdsa_sha2_128s_sign(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
// Construct header for M' as specified in Algorithm 22
uint8_t M_prime_header[2];
M_prime_header[0] = 0; // domain separator for pure signing
M_prime_header[1] = (uint8_t)context_len;
uint8_t entropy[BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(entropy, sizeof(entropy));
BCM_slhdsa_sha2_128s_sign_internal(out_signature, private_key, M_prime_header,
context, context_len, msg, msg_len,
entropy);
return bcm_status::approved;
}
static int slhdsa_get_context_and_oid(uint8_t *out_context_and_oid,
size_t *out_context_and_oid_len,
size_t max_out_context_and_oid,
const uint8_t *context,
size_t context_len, int hash_nid,
size_t hashed_msg_len) {
const uint8_t *oid;
size_t oid_len;
size_t expected_hash_len;
switch (hash_nid) {
case NID_sha256:
oid = kSHA256OID;
oid_len = sizeof(kSHA256OID);
static_assert(sizeof(kSHA256OID) <= MAX_OID_LENGTH, "");
expected_hash_len = 32;
break;
// The SLH-DSA spec only lists SHA-256 and SHA-512. This function also
// supports SHA-384, which is non-standard.
case NID_sha384:
oid = kSHA384OID;
oid_len = sizeof(kSHA384OID);
static_assert(sizeof(kSHA384OID) <= MAX_OID_LENGTH, "");
expected_hash_len = 48;
break;
// If adding a hash function with a larger `oid_len`, update the size of
// `context_and_oid` in the callers.
default:
return 0;
}
if (hashed_msg_len != expected_hash_len) {
return 0;
}
*out_context_and_oid_len = context_len + oid_len;
if (*out_context_and_oid_len > max_out_context_and_oid) {
return 0;
}
OPENSSL_memcpy(out_context_and_oid, context, context_len);
OPENSSL_memcpy(out_context_and_oid + context_len, oid, oid_len);
return 1;
}
bcm_status BCM_slhdsa_sha2_128s_prehash_sign(
uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES],
const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES],
const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid,
const uint8_t *context, size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
uint8_t M_prime_header[2];
M_prime_header[0] = 1; // domain separator for prehashed signing
M_prime_header[1] = (uint8_t)context_len;
uint8_t context_and_oid[MAX_CONTEXT_LENGTH + MAX_OID_LENGTH];
size_t context_and_oid_len;
if (!slhdsa_get_context_and_oid(context_and_oid, &context_and_oid_len,
sizeof(context_and_oid), context, context_len,
hash_nid, hashed_msg_len)) {
return bcm_status::failure;
}
uint8_t entropy[BCM_SLHDSA_SHA2_128S_N];
RAND_bytes(entropy, sizeof(entropy));
BCM_slhdsa_sha2_128s_sign_internal(out_signature, private_key, M_prime_header,
context_and_oid, context_and_oid_len,
hashed_msg, hashed_msg_len, entropy);
return bcm_status::approved;
}
// Implements Algorithm 24: slh_verify function (Section 10.3, page 41)
bcm_status BCM_slhdsa_sha2_128s_verify(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t *msg, size_t msg_len, const uint8_t *context,
size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
// Construct header for M' as specified in Algorithm 24
uint8_t M_prime_header[2];
M_prime_header[0] = 0; // domain separator for pure verification
M_prime_header[1] = (uint8_t)context_len;
return BCM_slhdsa_sha2_128s_verify_internal(
signature, signature_len, public_key, M_prime_header, context,
context_len, msg, msg_len);
}
bcm_status BCM_slhdsa_sha2_128s_prehash_verify(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid,
const uint8_t *context, size_t context_len) {
if (context_len > MAX_CONTEXT_LENGTH) {
return bcm_status::failure;
}
uint8_t M_prime_header[2];
M_prime_header[0] = 1; // domain separator for prehashed verification
M_prime_header[1] = (uint8_t)context_len;
uint8_t context_and_oid[MAX_CONTEXT_LENGTH + MAX_OID_LENGTH];
size_t context_and_oid_len;
if (!slhdsa_get_context_and_oid(context_and_oid, &context_and_oid_len,
sizeof(context_and_oid), context, context_len,
hash_nid, hashed_msg_len)) {
return bcm_status::failure;
}
return BCM_slhdsa_sha2_128s_verify_internal(
signature, signature_len, public_key, M_prime_header, context_and_oid,
context_and_oid_len, hashed_msg, hashed_msg_len);
}
bcm_status BCM_slhdsa_sha2_128s_verify_internal(
const uint8_t *signature, size_t signature_len,
const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context,
size_t context_len, const uint8_t *msg, size_t msg_len) {
if (signature_len != BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES) {
return bcm_status::failure;
}
const uint8_t *pk_seed = public_key;
const uint8_t *pk_root = public_key + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *r = signature;
const uint8_t *sig_fors = signature + BCM_SLHDSA_SHA2_128S_N;
const uint8_t *sig_ht = sig_fors + SLHDSA_SHA2_128S_FORS_BYTES;
uint8_t digest[SLHDSA_SHA2_128S_DIGEST_SIZE];
slhdsa_thash_hmsg(digest, r, pk_seed, pk_root, header, context, context_len,
msg, msg_len);
uint8_t fors_digest[SLHDSA_SHA2_128S_FORS_MSG_BYTES];
OPENSSL_memcpy(fors_digest, digest, SLHDSA_SHA2_128S_FORS_MSG_BYTES);
const uint64_t idx_tree =
load_tree_index(digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES);
uint32_t idx_leaf = CRYPTO_load_u16_be(
digest + SLHDSA_SHA2_128S_FORS_MSG_BYTES + SLHDSA_SHA2_128S_TREE_BYTES);
idx_leaf &= (~(uint32_t)0) >> (32 - SLHDSA_SHA2_128S_LEAF_BITS);
uint8_t addr[32] = {0};
slhdsa_set_tree_addr(addr, idx_tree);
slhdsa_set_type(addr, SLHDSA_SHA2_128S_ADDR_TYPE_FORSTREE);
slhdsa_set_keypair_addr(addr, idx_leaf);
uint8_t pk_fors[BCM_SLHDSA_SHA2_128S_N];
slhdsa_fors_pk_from_sig(pk_fors, sig_fors, fors_digest, pk_seed, addr);
if (!slhdsa_ht_verify(sig_ht, pk_fors, idx_tree, idx_leaf, pk_root,
pk_seed)) {
return bcm_status::failure;
}
return bcm_status::approved;
}