blob: 4596472ab580521339567a22c6d558c9de3aefe1 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L /* needed for strdup, snprintf, vprintf etc */
#endif
#include <openssl/mem.h>
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#if defined(OPENSSL_WINDOWS)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
/* Work around a clang-cl bug: SecureZeroMemory() below uses __stosb() but
* windows.h only declares that intrinsic and then uses `#pragma intrinsic` for
* it. clang-cl doesn't implement `#pragma intrinsic` yet; it instead defines
* the function as an always-inline symbol in its intrin.h.
* TODO(thakis): Remove this once http://llvm.org/PR19898 is fixed.
*/
#include <intrin.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#else
#include <strings.h>
#endif
void *OPENSSL_realloc_clean(void *ptr, size_t old_size, size_t new_size) {
if (ptr == NULL) {
return OPENSSL_malloc(new_size);
}
if (new_size == 0) {
return NULL;
}
/* We don't support shrinking the buffer. Note the memcpy that copies
* |old_size| bytes to the new buffer, below. */
if (new_size < old_size) {
return NULL;
}
void *ret = OPENSSL_malloc(new_size);
if (ret == NULL) {
return NULL;
}
memcpy(ret, ptr, old_size);
OPENSSL_cleanse(ptr, old_size);
OPENSSL_free(ptr);
return ret;
}
void OPENSSL_cleanse(void *ptr, size_t len) {
#if defined(OPENSSL_WINDOWS)
SecureZeroMemory(ptr, len);
#else
memset(ptr, 0, len);
#if !defined(OPENSSL_NO_ASM)
/* As best as we can tell, this is sufficient to break any optimisations that
might try to eliminate "superfluous" memsets. If there's an easy way to
detect memset_s, it would be better to use that. */
__asm__ __volatile__("" : : "r"(ptr) : "memory");
#endif
#endif /* !OPENSSL_NO_ASM */
}
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
const uint8_t *a = in_a;
const uint8_t *b = in_b;
uint8_t x = 0;
for (size_t i = 0; i < len; i++) {
x |= a[i] ^ b[i];
}
return x;
}
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
/* These are the FNV-1a parameters for 32 bits. */
static const uint32_t kPrime = 16777619u;
static const uint32_t kOffsetBasis = 2166136261u;
const uint8_t *in = ptr;
uint32_t h = kOffsetBasis;
for (size_t i = 0; i < len; i++) {
h ^= in[i];
h *= kPrime;
}
return h;
}
size_t OPENSSL_strnlen(const char *s, size_t len) {
for (size_t i = 0; i < len; i++) {
if (s[i] == 0) {
return i;
}
}
return len;
}
#if defined(OPENSSL_WINDOWS)
char *OPENSSL_strdup(const char *s) { return _strdup(s); }
int OPENSSL_strcasecmp(const char *a, const char *b) {
return _stricmp(a, b);
}
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
return _strnicmp(a, b, n);
}
#else
char *OPENSSL_strdup(const char *s) { return strdup(s); }
int OPENSSL_strcasecmp(const char *a, const char *b) {
return strcasecmp(a, b);
}
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
return strncasecmp(a, b, n);
}
#endif
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
va_list args;
va_start(args, format);
int ret = BIO_vsnprintf(buf, n, format, args);
va_end(args);
return ret;
}
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
return vsnprintf(buf, n, format, args);
}