| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bn.h> |
| |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/thread.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \ |
| defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) |
| #define OPENSSL_BN_ASM_MONT |
| #endif |
| |
| BN_MONT_CTX *BN_MONT_CTX_new(void) { |
| BN_MONT_CTX *ret = OPENSSL_malloc(sizeof(BN_MONT_CTX)); |
| |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| memset(ret, 0, sizeof(BN_MONT_CTX)); |
| BN_init(&ret->RR); |
| BN_init(&ret->N); |
| |
| return ret; |
| } |
| |
| void BN_MONT_CTX_free(BN_MONT_CTX *mont) { |
| if (mont == NULL) { |
| return; |
| } |
| |
| BN_free(&mont->RR); |
| BN_free(&mont->N); |
| OPENSSL_free(mont); |
| } |
| |
| BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from) { |
| if (to == from) { |
| return to; |
| } |
| |
| if (!BN_copy(&to->RR, &from->RR) || |
| !BN_copy(&to->N, &from->N)) { |
| return NULL; |
| } |
| to->n0[0] = from->n0[0]; |
| to->n0[1] = from->n0[1]; |
| return to; |
| } |
| |
| OPENSSL_COMPILE_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
| BN_MONT_CTX_N0_LIMBS_VALUE_INVALID); |
| OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == |
| sizeof(uint64_t), BN_MONT_CTX_set_64_bit_mismatch); |
| |
| int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { |
| if (BN_is_zero(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); |
| return 0; |
| } |
| if (!BN_is_odd(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| if (BN_is_negative(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| |
| /* Save the modulus. */ |
| if (!BN_copy(&mont->N, mod)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| if (BN_get_flags(mod, BN_FLG_CONSTTIME)) { |
| BN_set_flags(&mont->N, BN_FLG_CONSTTIME); |
| } |
| |
| /* Find n0 such that n0 * N == -1 (mod r). |
| * |
| * Only certain BN_BITS2<=32 platforms actually make use of n0[1]. For the |
| * others, we could use a shorter R value and use faster |BN_ULONG|-based |
| * math instead of |uint64_t|-based math, which would be double-precision. |
| * However, currently only the assembler files know which is which. */ |
| uint64_t n0 = bn_mont_n0(mod); |
| mont->n0[0] = (BN_ULONG)n0; |
| #if BN_MONT_CTX_N0_LIMBS == 2 |
| mont->n0[1] = (BN_ULONG)(n0 >> BN_BITS2); |
| #else |
| mont->n0[1] = 0; |
| #endif |
| |
| /* Save RR = R**2 (mod N). R is the smallest power of 2**BN_BITS such that R |
| * > mod. Even though the assembly on some 32-bit platforms works with 64-bit |
| * values, using |BN_BITS2| here, rather than |BN_MONT_CTX_N0_LIMBS * |
| * BN_BITS2|, is correct because because R^2 will still be a multiple of the |
| * latter as |BN_MONT_CTX_N0_LIMBS| is either one or two. */ |
| unsigned lgBigR = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; |
| BN_zero(&mont->RR); |
| if (!BN_set_bit(&mont->RR, lgBigR * 2) || |
| !BN_mod(&mont->RR, &mont->RR, &mont->N, ctx)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, |
| const BIGNUM *mod, BN_CTX *bn_ctx) { |
| CRYPTO_MUTEX_lock_read(lock); |
| BN_MONT_CTX *ctx = *pmont; |
| CRYPTO_MUTEX_unlock_read(lock); |
| |
| if (ctx) { |
| return 1; |
| } |
| |
| CRYPTO_MUTEX_lock_write(lock); |
| ctx = *pmont; |
| if (ctx) { |
| goto out; |
| } |
| |
| ctx = BN_MONT_CTX_new(); |
| if (ctx == NULL) { |
| goto out; |
| } |
| if (!BN_MONT_CTX_set(ctx, mod, bn_ctx)) { |
| BN_MONT_CTX_free(ctx); |
| ctx = NULL; |
| goto out; |
| } |
| *pmont = ctx; |
| |
| out: |
| CRYPTO_MUTEX_unlock_write(lock); |
| return ctx != NULL; |
| } |
| |
| int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont, |
| BN_CTX *ctx) { |
| return BN_mod_mul_montgomery(ret, a, &mont->RR, mont, ctx); |
| } |
| |
| static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, |
| const BN_MONT_CTX *mont) { |
| BN_ULONG *ap, *np, *rp, n0, v, carry; |
| int nl, max, i; |
| |
| const BIGNUM *n = &mont->N; |
| nl = n->top; |
| if (nl == 0) { |
| ret->top = 0; |
| return 1; |
| } |
| |
| max = (2 * nl); /* carry is stored separately */ |
| if (bn_wexpand(r, max) == NULL) { |
| return 0; |
| } |
| |
| r->neg ^= n->neg; |
| np = n->d; |
| rp = r->d; |
| |
| /* clear the top words of T */ |
| if (max > r->top) { |
| memset(&rp[r->top], 0, (max - r->top) * sizeof(BN_ULONG)); |
| } |
| |
| r->top = max; |
| n0 = mont->n0[0]; |
| |
| for (carry = 0, i = 0; i < nl; i++, rp++) { |
| v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2); |
| v = (v + carry + rp[nl]) & BN_MASK2; |
| carry |= (v != rp[nl]); |
| carry &= (v <= rp[nl]); |
| rp[nl] = v; |
| } |
| |
| if (bn_wexpand(ret, nl) == NULL) { |
| return 0; |
| } |
| ret->top = nl; |
| ret->neg = r->neg; |
| |
| rp = ret->d; |
| ap = &(r->d[nl]); |
| |
| { |
| BN_ULONG *nrp; |
| uintptr_t m; |
| |
| v = bn_sub_words(rp, ap, np, nl) - carry; |
| /* if subtraction result is real, then trick unconditional memcpy below to |
| * perform in-place "refresh" instead of actual copy. */ |
| m = (0u - (uintptr_t)v); |
| nrp = (BN_ULONG *)(((uintptr_t)rp & ~m) | ((uintptr_t)ap & m)); |
| |
| for (i = 0, nl -= 4; i < nl; i += 4) { |
| BN_ULONG t1, t2, t3, t4; |
| |
| t1 = nrp[i + 0]; |
| t2 = nrp[i + 1]; |
| t3 = nrp[i + 2]; |
| ap[i + 0] = 0; |
| t4 = nrp[i + 3]; |
| ap[i + 1] = 0; |
| rp[i + 0] = t1; |
| ap[i + 2] = 0; |
| rp[i + 1] = t2; |
| ap[i + 3] = 0; |
| rp[i + 2] = t3; |
| rp[i + 3] = t4; |
| } |
| |
| for (nl += 4; i < nl; i++) { |
| rp[i] = nrp[i], ap[i] = 0; |
| } |
| } |
| |
| bn_correct_top(r); |
| bn_correct_top(ret); |
| |
| return 1; |
| } |
| |
| int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, const BN_MONT_CTX *mont, |
| BN_CTX *ctx) { |
| int ret = 0; |
| BIGNUM *t; |
| |
| BN_CTX_start(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL || |
| !BN_copy(t, a)) { |
| goto err; |
| } |
| |
| ret = BN_from_montgomery_word(r, t, mont); |
| |
| err: |
| BN_CTX_end(ctx); |
| |
| return ret; |
| } |
| |
| int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| BIGNUM *tmp; |
| int ret = 0; |
| |
| #if defined(OPENSSL_BN_ASM_MONT) |
| int num = mont->N.top; |
| |
| if (num > 1 && a->top == num && b->top == num) { |
| if (bn_wexpand(r, num) == NULL) { |
| return 0; |
| } |
| if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { |
| r->neg = a->neg ^ b->neg; |
| r->top = num; |
| bn_correct_top(r); |
| return 1; |
| } |
| } |
| #endif |
| |
| BN_CTX_start(ctx); |
| tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) { |
| goto err; |
| } |
| |
| if (a == b) { |
| if (!BN_sqr(tmp, a, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_mul(tmp, a, b, ctx)) { |
| goto err; |
| } |
| } |
| |
| /* reduce from aRR to aR */ |
| if (!BN_from_montgomery_word(r, tmp, mont)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |