| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| |
| |
| static int do_ssl3_write(SSL *ssl, int type, const uint8_t *buf, unsigned len); |
| |
| /* ssl3_get_record reads a new input record. On success, it places it in |
| * |ssl->s3->rrec| and returns one. Otherwise it returns <= 0 on error or if |
| * more data is needed. */ |
| static int ssl3_get_record(SSL *ssl) { |
| again: |
| switch (ssl->s3->recv_shutdown) { |
| case ssl_shutdown_none: |
| break; |
| case ssl_shutdown_fatal_alert: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| return -1; |
| case ssl_shutdown_close_notify: |
| return 0; |
| } |
| |
| CBS body; |
| uint8_t type, alert; |
| size_t consumed; |
| enum ssl_open_record_t open_ret = |
| tls_open_record(ssl, &type, &body, &consumed, &alert, |
| ssl_read_buffer(ssl), ssl_read_buffer_len(ssl)); |
| if (open_ret != ssl_open_record_partial) { |
| ssl_read_buffer_consume(ssl, consumed); |
| } |
| switch (open_ret) { |
| case ssl_open_record_partial: { |
| int read_ret = ssl_read_buffer_extend_to(ssl, consumed); |
| if (read_ret <= 0) { |
| return read_ret; |
| } |
| goto again; |
| } |
| |
| case ssl_open_record_success: |
| if (CBS_len(&body) > 0xffff) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return -1; |
| } |
| |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| rr->type = type; |
| rr->length = (uint16_t)CBS_len(&body); |
| rr->data = (uint8_t *)CBS_data(&body); |
| return 1; |
| |
| case ssl_open_record_discard: |
| goto again; |
| |
| case ssl_open_record_close_notify: |
| return 0; |
| |
| case ssl_open_record_fatal_alert: |
| return -1; |
| |
| case ssl_open_record_error: |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return -1; |
| } |
| |
| assert(0); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| int ssl3_write_app_data(SSL *ssl, const void *buf, int len) { |
| assert(!SSL_in_init(ssl) || SSL_in_false_start(ssl)); |
| |
| return ssl3_write_bytes(ssl, SSL3_RT_APPLICATION_DATA, buf, len); |
| } |
| |
| /* Call this to write data in records of type |type|. It will return <= 0 if |
| * not all data has been sent or non-blocking IO. */ |
| int ssl3_write_bytes(SSL *ssl, int type, const void *buf_, int len) { |
| const uint8_t *buf = buf_; |
| unsigned tot, n, nw; |
| |
| assert(ssl->s3->wnum <= INT_MAX); |
| tot = ssl->s3->wnum; |
| ssl->s3->wnum = 0; |
| |
| /* Ensure that if we end up with a smaller value of data to write out than |
| * the the original len from a write which didn't complete for non-blocking |
| * I/O and also somehow ended up avoiding the check for this in |
| * ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be possible to |
| * end up with (len-tot) as a large number that will then promptly send |
| * beyond the end of the users buffer ... so we trap and report the error in |
| * a way the user will notice. */ |
| if (len < 0 || (size_t)len < tot) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH); |
| return -1; |
| } |
| |
| n = (len - tot); |
| for (;;) { |
| /* max contains the maximum number of bytes that we can put into a |
| * record. */ |
| unsigned max = ssl->max_send_fragment; |
| if (n > max) { |
| nw = max; |
| } else { |
| nw = n; |
| } |
| |
| int ret = do_ssl3_write(ssl, type, &buf[tot], nw); |
| if (ret <= 0) { |
| ssl->s3->wnum = tot; |
| return ret; |
| } |
| |
| if (ret == (int)n || (type == SSL3_RT_APPLICATION_DATA && |
| (ssl->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) { |
| return tot + ret; |
| } |
| |
| n -= ret; |
| tot += ret; |
| } |
| } |
| |
| static int ssl3_write_pending(SSL *ssl, int type, const uint8_t *buf, |
| unsigned int len) { |
| if (ssl->s3->wpend_tot > (int)len || |
| (ssl->s3->wpend_buf != buf && |
| !(ssl->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)) || |
| ssl->s3->wpend_type != type) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_WRITE_RETRY); |
| return -1; |
| } |
| |
| int ret = ssl_write_buffer_flush(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| return ssl->s3->wpend_ret; |
| } |
| |
| /* do_ssl3_write writes an SSL record of the given type. */ |
| static int do_ssl3_write(SSL *ssl, int type, const uint8_t *buf, unsigned len) { |
| /* If there is still data from the previous record, flush it. */ |
| if (ssl_write_buffer_is_pending(ssl)) { |
| return ssl3_write_pending(ssl, type, buf, len); |
| } |
| |
| /* If we have an alert to send, lets send it */ |
| if (ssl->s3->alert_dispatch) { |
| int ret = ssl->method->dispatch_alert(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| /* if it went, fall through and send more stuff */ |
| } |
| |
| if (len > SSL3_RT_MAX_PLAIN_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| if (len == 0) { |
| return 0; |
| } |
| |
| size_t max_out = len + ssl_max_seal_overhead(ssl); |
| if (max_out < len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return -1; |
| } |
| uint8_t *out; |
| size_t ciphertext_len; |
| if (!ssl_write_buffer_init(ssl, &out, max_out) || |
| !tls_seal_record(ssl, out, &ciphertext_len, max_out, type, buf, len)) { |
| return -1; |
| } |
| ssl_write_buffer_set_len(ssl, ciphertext_len); |
| |
| /* memorize arguments so that ssl3_write_pending can detect bad write retries |
| * later */ |
| ssl->s3->wpend_tot = len; |
| ssl->s3->wpend_buf = buf; |
| ssl->s3->wpend_type = type; |
| ssl->s3->wpend_ret = len; |
| |
| /* we now just need to write the buffer */ |
| return ssl3_write_pending(ssl, type, buf, len); |
| } |
| |
| static int consume_record(SSL *ssl, uint8_t *out, int len, int peek) { |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| |
| if (len <= 0) { |
| return len; |
| } |
| |
| if (len > (int)rr->length) { |
| len = (int)rr->length; |
| } |
| |
| memcpy(out, rr->data, len); |
| if (!peek) { |
| rr->length -= len; |
| rr->data += len; |
| if (rr->length == 0) { |
| /* The record has been consumed, so we may now clear the buffer. */ |
| ssl_read_buffer_discard(ssl); |
| } |
| } |
| return len; |
| } |
| |
| int ssl3_read_app_data(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len, |
| int peek) { |
| assert(!SSL_in_init(ssl)); |
| assert(ssl->s3->initial_handshake_complete); |
| *out_got_handshake = 0; |
| |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| |
| for (;;) { |
| /* A previous iteration may have read a partial handshake message. Do not |
| * allow more app data in that case. */ |
| int has_hs_data = ssl->init_buf != NULL && ssl->init_buf->length > 0; |
| |
| /* Get new packet if necessary. */ |
| if (rr->length == 0 && !has_hs_data) { |
| int ret = ssl3_get_record(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| if (has_hs_data || rr->type == SSL3_RT_HANDSHAKE) { |
| /* Post-handshake data prior to TLS 1.3 is always renegotiation, which we |
| * never accept as a server. Otherwise |ssl3_get_message| will send |
| * |SSL_R_EXCESSIVE_MESSAGE_SIZE|. */ |
| if (ssl->server && ssl3_protocol_version(ssl) < TLS1_3_VERSION) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); |
| return -1; |
| } |
| |
| /* Parse post-handshake handshake messages. */ |
| int ret = ssl3_get_message(ssl, -1, ssl_dont_hash_message); |
| if (ret <= 0) { |
| return ret; |
| } |
| *out_got_handshake = 1; |
| return -1; |
| } |
| |
| if (rr->type != SSL3_RT_APPLICATION_DATA) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| return -1; |
| } |
| |
| if (rr->length != 0) { |
| return consume_record(ssl, buf, len, peek); |
| } |
| |
| /* Discard empty records and loop again. */ |
| } |
| } |
| |
| int ssl3_read_change_cipher_spec(SSL *ssl) { |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| |
| if (rr->length == 0) { |
| int ret = ssl3_get_record(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| if (rr->type != SSL3_RT_CHANGE_CIPHER_SPEC) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| return -1; |
| } |
| |
| if (rr->length != 1 || rr->data[0] != SSL3_MT_CCS) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return -1; |
| } |
| |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, rr->data, |
| rr->length); |
| |
| rr->length = 0; |
| ssl_read_buffer_discard(ssl); |
| return 1; |
| } |
| |
| void ssl3_read_close_notify(SSL *ssl) { |
| /* Read records until an error or close_notify. */ |
| while (ssl3_get_record(ssl) > 0) { |
| ; |
| } |
| } |
| |
| int ssl3_read_handshake_bytes(SSL *ssl, uint8_t *buf, int len) { |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| |
| for (;;) { |
| /* Get new packet if necessary. */ |
| if (rr->length == 0) { |
| int ret = ssl3_get_record(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| if (rr->type != SSL3_RT_HANDSHAKE) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| return -1; |
| } |
| |
| if (rr->length != 0) { |
| return consume_record(ssl, buf, len, 0 /* consume data */); |
| } |
| |
| /* Discard empty records and loop again. */ |
| } |
| } |
| |
| int ssl3_send_alert(SSL *ssl, int level, int desc) { |
| /* It is illegal to send an alert when we've already sent a closing one. */ |
| if (ssl->s3->send_shutdown != ssl_shutdown_none) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| return -1; |
| } |
| |
| if (level == SSL3_AL_FATAL) { |
| ssl->s3->send_shutdown = ssl_shutdown_fatal_alert; |
| } else if (level == SSL3_AL_WARNING && desc == SSL_AD_CLOSE_NOTIFY) { |
| ssl->s3->send_shutdown = ssl_shutdown_close_notify; |
| } |
| |
| ssl->s3->alert_dispatch = 1; |
| ssl->s3->send_alert[0] = level; |
| ssl->s3->send_alert[1] = desc; |
| if (!ssl_write_buffer_is_pending(ssl)) { |
| /* Nothing is being written out, so the alert may be dispatched |
| * immediately. */ |
| return ssl->method->dispatch_alert(ssl); |
| } |
| |
| /* The alert will be dispatched later. */ |
| return -1; |
| } |
| |
| int ssl3_dispatch_alert(SSL *ssl) { |
| ssl->s3->alert_dispatch = 0; |
| int ret = do_ssl3_write(ssl, SSL3_RT_ALERT, &ssl->s3->send_alert[0], 2); |
| if (ret <= 0) { |
| ssl->s3->alert_dispatch = 1; |
| return ret; |
| } |
| |
| /* If the alert is fatal, flush the BIO now. */ |
| if (ssl->s3->send_alert[0] == SSL3_AL_FATAL) { |
| BIO_flush(ssl->wbio); |
| } |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_ALERT, ssl->s3->send_alert, |
| 2); |
| |
| int alert = (ssl->s3->send_alert[0] << 8) | ssl->s3->send_alert[1]; |
| ssl_do_info_callback(ssl, SSL_CB_WRITE_ALERT, alert); |
| |
| return 1; |
| } |