| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/rsa.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/engine.h> |
| #include <openssl/err.h> |
| #include <openssl/ex_data.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/thread.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| |
| |
| static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; |
| |
| RSA *RSA_new(void) { return RSA_new_method(NULL); } |
| |
| RSA *RSA_new_method(const ENGINE *engine) { |
| RSA *rsa = OPENSSL_malloc(sizeof(RSA)); |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| memset(rsa, 0, sizeof(RSA)); |
| |
| if (engine) { |
| rsa->meth = ENGINE_get_RSA_method(engine); |
| } |
| |
| if (rsa->meth == NULL) { |
| rsa->meth = (RSA_METHOD*) &RSA_default_method; |
| } |
| METHOD_ref(rsa->meth); |
| |
| rsa->references = 1; |
| rsa->flags = rsa->meth->flags; |
| CRYPTO_MUTEX_init(&rsa->lock); |
| CRYPTO_new_ex_data(&rsa->ex_data); |
| |
| if (rsa->meth->init && !rsa->meth->init(rsa)) { |
| CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data); |
| CRYPTO_MUTEX_cleanup(&rsa->lock); |
| METHOD_unref(rsa->meth); |
| OPENSSL_free(rsa); |
| return NULL; |
| } |
| |
| return rsa; |
| } |
| |
| void RSA_additional_prime_free(RSA_additional_prime *ap) { |
| if (ap == NULL) { |
| return; |
| } |
| |
| BN_clear_free(ap->prime); |
| BN_clear_free(ap->exp); |
| BN_clear_free(ap->coeff); |
| BN_clear_free(ap->r); |
| BN_MONT_CTX_free(ap->mont); |
| OPENSSL_free(ap); |
| } |
| |
| void RSA_free(RSA *rsa) { |
| unsigned u; |
| |
| if (rsa == NULL) { |
| return; |
| } |
| |
| if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { |
| return; |
| } |
| |
| if (rsa->meth->finish) { |
| rsa->meth->finish(rsa); |
| } |
| METHOD_unref(rsa->meth); |
| |
| CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data); |
| |
| BN_clear_free(rsa->n); |
| BN_clear_free(rsa->e); |
| BN_clear_free(rsa->d); |
| BN_clear_free(rsa->p); |
| BN_clear_free(rsa->q); |
| BN_clear_free(rsa->dmp1); |
| BN_clear_free(rsa->dmq1); |
| BN_clear_free(rsa->iqmp); |
| BN_MONT_CTX_free(rsa->mont_n); |
| BN_MONT_CTX_free(rsa->mont_p); |
| BN_MONT_CTX_free(rsa->mont_q); |
| for (u = 0; u < rsa->num_blindings; u++) { |
| BN_BLINDING_free(rsa->blindings[u]); |
| } |
| OPENSSL_free(rsa->blindings); |
| OPENSSL_free(rsa->blindings_inuse); |
| if (rsa->additional_primes != NULL) { |
| sk_RSA_additional_prime_pop_free(rsa->additional_primes, |
| RSA_additional_prime_free); |
| } |
| CRYPTO_MUTEX_cleanup(&rsa->lock); |
| OPENSSL_free(rsa); |
| } |
| |
| int RSA_up_ref(RSA *rsa) { |
| CRYPTO_refcount_inc(&rsa->references); |
| return 1; |
| } |
| |
| void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, |
| const BIGNUM **out_d) { |
| if (out_n != NULL) { |
| *out_n = rsa->n; |
| } |
| if (out_e != NULL) { |
| *out_e = rsa->e; |
| } |
| if (out_d != NULL) { |
| *out_d = rsa->d; |
| } |
| } |
| |
| void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, |
| const BIGNUM **out_q) { |
| if (out_p != NULL) { |
| *out_p = rsa->p; |
| } |
| if (out_q != NULL) { |
| *out_q = rsa->q; |
| } |
| } |
| |
| void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, |
| const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { |
| if (out_dmp1 != NULL) { |
| *out_dmp1 = rsa->dmp1; |
| } |
| if (out_dmq1 != NULL) { |
| *out_dmq1 = rsa->dmq1; |
| } |
| if (out_iqmp != NULL) { |
| *out_iqmp = rsa->iqmp; |
| } |
| } |
| |
| int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) { |
| if (rsa->meth->keygen) { |
| return rsa->meth->keygen(rsa, bits, e_value, cb); |
| } |
| |
| return rsa_default_keygen(rsa, bits, e_value, cb); |
| } |
| |
| int RSA_generate_multi_prime_key(RSA *rsa, int bits, int num_primes, |
| BIGNUM *e_value, BN_GENCB *cb) { |
| if (rsa->meth->multi_prime_keygen) { |
| return rsa->meth->multi_prime_keygen(rsa, bits, num_primes, e_value, cb); |
| } |
| |
| return rsa_default_multi_prime_keygen(rsa, bits, num_primes, e_value, cb); |
| } |
| |
| int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| if (rsa->meth->encrypt) { |
| return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| return rsa_default_encrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return out_len; |
| } |
| |
| int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| if (rsa->meth->sign_raw) { |
| return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return out_len; |
| } |
| |
| int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, |
| const uint8_t *in, size_t in_len, int padding) { |
| if (rsa->meth->decrypt) { |
| return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding); |
| } |
| |
| int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return out_len; |
| } |
| |
| int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa, |
| int padding) { |
| size_t out_len; |
| |
| if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) { |
| return -1; |
| } |
| |
| if (out_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| return -1; |
| } |
| return out_len; |
| } |
| |
| unsigned RSA_size(const RSA *rsa) { |
| if (rsa->meth->size) { |
| return rsa->meth->size(rsa); |
| } |
| |
| return rsa_default_size(rsa); |
| } |
| |
| int RSA_is_opaque(const RSA *rsa) { |
| return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); |
| } |
| |
| int RSA_supports_digest(const RSA *rsa, const EVP_MD *md) { |
| if (rsa->meth && rsa->meth->supports_digest) { |
| return rsa->meth->supports_digest(rsa, md); |
| } |
| return 1; |
| } |
| |
| int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
| CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { |
| int index; |
| if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func, |
| free_func)) { |
| return -1; |
| } |
| return index; |
| } |
| |
| int RSA_set_ex_data(RSA *d, int idx, void *arg) { |
| return CRYPTO_set_ex_data(&d->ex_data, idx, arg); |
| } |
| |
| void *RSA_get_ex_data(const RSA *d, int idx) { |
| return CRYPTO_get_ex_data(&d->ex_data, idx); |
| } |
| |
| /* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's |
| * the length of an MD5 and SHA1 hash. */ |
| static const unsigned SSL_SIG_LENGTH = 36; |
| |
| /* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is |
| * to be signed with PKCS#1. */ |
| struct pkcs1_sig_prefix { |
| /* nid identifies the hash function. */ |
| int nid; |
| /* len is the number of bytes of |bytes| which are valid. */ |
| uint8_t len; |
| /* bytes contains the DER bytes. */ |
| uint8_t bytes[19]; |
| }; |
| |
| /* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with |
| * different hash functions. */ |
| static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { |
| { |
| NID_md5, |
| 18, |
| {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, |
| }, |
| { |
| NID_sha1, |
| 15, |
| {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, |
| 0x00, 0x04, 0x14}, |
| }, |
| { |
| NID_sha224, |
| 19, |
| {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, |
| }, |
| { |
| NID_sha256, |
| 19, |
| {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, |
| }, |
| { |
| NID_sha384, |
| 19, |
| {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, |
| }, |
| { |
| NID_sha512, |
| 19, |
| {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, |
| 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, |
| }, |
| { |
| NID_undef, 0, {0}, |
| }, |
| }; |
| |
| int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, |
| int *is_alloced, int hash_nid, const uint8_t *msg, |
| size_t msg_len) { |
| unsigned i; |
| |
| if (hash_nid == NID_md5_sha1) { |
| /* Special case: SSL signature, just check the length. */ |
| if (msg_len != SSL_SIG_LENGTH) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| |
| *out_msg = (uint8_t*) msg; |
| *out_msg_len = SSL_SIG_LENGTH; |
| *is_alloced = 0; |
| return 1; |
| } |
| |
| for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { |
| const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; |
| if (sig_prefix->nid != hash_nid) { |
| continue; |
| } |
| |
| const uint8_t* prefix = sig_prefix->bytes; |
| unsigned prefix_len = sig_prefix->len; |
| unsigned signed_msg_len; |
| uint8_t *signed_msg; |
| |
| signed_msg_len = prefix_len + msg_len; |
| if (signed_msg_len < prefix_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); |
| return 0; |
| } |
| |
| signed_msg = OPENSSL_malloc(signed_msg_len); |
| if (!signed_msg) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| memcpy(signed_msg, prefix, prefix_len); |
| memcpy(signed_msg + prefix_len, msg, msg_len); |
| |
| *out_msg = signed_msg; |
| *out_msg_len = signed_msg_len; |
| *is_alloced = 1; |
| |
| return 1; |
| } |
| |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| return 0; |
| } |
| |
| int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out, |
| unsigned *out_len, RSA *rsa) { |
| const unsigned rsa_size = RSA_size(rsa); |
| int ret = 0; |
| uint8_t *signed_msg; |
| size_t signed_msg_len; |
| int signed_msg_is_alloced = 0; |
| size_t size_t_out_len; |
| |
| if (rsa->meth->sign) { |
| return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa); |
| } |
| |
| if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| &signed_msg_is_alloced, hash_nid, in, in_len)) { |
| return 0; |
| } |
| |
| if (rsa_size < RSA_PKCS1_PADDING_SIZE || |
| signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); |
| goto finish; |
| } |
| |
| if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg, |
| signed_msg_len, RSA_PKCS1_PADDING)) { |
| *out_len = size_t_out_len; |
| ret = 1; |
| } |
| |
| finish: |
| if (signed_msg_is_alloced) { |
| OPENSSL_free(signed_msg); |
| } |
| return ret; |
| } |
| |
| int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len, |
| const uint8_t *sig, size_t sig_len, RSA *rsa) { |
| if (rsa->n == NULL || rsa->e == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| const size_t rsa_size = RSA_size(rsa); |
| uint8_t *buf = NULL; |
| int ret = 0; |
| uint8_t *signed_msg = NULL; |
| size_t signed_msg_len, len; |
| int signed_msg_is_alloced = 0; |
| |
| if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); |
| return 0; |
| } |
| |
| buf = OPENSSL_malloc(rsa_size); |
| if (!buf) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len, |
| RSA_PKCS1_PADDING)) { |
| goto out; |
| } |
| |
| if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, |
| &signed_msg_is_alloced, hash_nid, msg, msg_len)) { |
| goto out; |
| } |
| |
| if (len != signed_msg_len || memcmp(buf, signed_msg, len) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
| goto out; |
| } |
| |
| ret = 1; |
| |
| out: |
| OPENSSL_free(buf); |
| if (signed_msg_is_alloced) { |
| OPENSSL_free(signed_msg); |
| } |
| return ret; |
| } |
| |
| static void bn_free_and_null(BIGNUM **bn) { |
| BN_free(*bn); |
| *bn = NULL; |
| } |
| |
| int RSA_check_key(const RSA *key) { |
| BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q; |
| BN_CTX *ctx; |
| int ok = 0, has_crt_values; |
| |
| if (RSA_is_opaque(key)) { |
| /* Opaque keys can't be checked. */ |
| return 1; |
| } |
| |
| if ((key->p != NULL) != (key->q != NULL)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); |
| return 0; |
| } |
| |
| if (!key->n || !key->e) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| if (!key->d || !key->p) { |
| /* For a public key, or without p and q, there's nothing that can be |
| * checked. */ |
| return 1; |
| } |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| BN_init(&n); |
| BN_init(&pm1); |
| BN_init(&qm1); |
| BN_init(&lcm); |
| BN_init(&gcd); |
| BN_init(&de); |
| BN_init(&dmp1); |
| BN_init(&dmq1); |
| BN_init(&iqmp_times_q); |
| |
| if (!BN_mul(&n, key->p, key->q, ctx) || |
| /* lcm = lcm(prime-1, for all primes) */ |
| !BN_sub(&pm1, key->p, BN_value_one()) || |
| !BN_sub(&qm1, key->q, BN_value_one()) || |
| !BN_mul(&lcm, &pm1, &qm1, ctx) || |
| !BN_gcd(&gcd, &pm1, &qm1, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| |
| size_t num_additional_primes = 0; |
| if (key->additional_primes != NULL) { |
| num_additional_primes = sk_RSA_additional_prime_num(key->additional_primes); |
| } |
| |
| for (size_t i = 0; i < num_additional_primes; i++) { |
| const RSA_additional_prime *ap = |
| sk_RSA_additional_prime_value(key->additional_primes, i); |
| if (!BN_mul(&n, &n, ap->prime, ctx) || |
| !BN_sub(&pm1, ap->prime, BN_value_one()) || |
| !BN_mul(&lcm, &lcm, &pm1, ctx) || |
| !BN_gcd(&gcd, &gcd, &pm1, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| } |
| |
| if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) || |
| !BN_gcd(&gcd, &pm1, &qm1, ctx) || |
| /* de = d*e mod lcm(prime-1, for all primes). */ |
| !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| |
| if (BN_cmp(&n, key->n) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); |
| goto out; |
| } |
| |
| if (!BN_is_one(&de)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); |
| goto out; |
| } |
| |
| has_crt_values = key->dmp1 != NULL; |
| if (has_crt_values != (key->dmq1 != NULL) || |
| has_crt_values != (key->iqmp != NULL)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); |
| goto out; |
| } |
| |
| if (has_crt_values && num_additional_primes == 0) { |
| if (/* dmp1 = d mod (p-1) */ |
| !BN_mod(&dmp1, key->d, &pm1, ctx) || |
| /* dmq1 = d mod (q-1) */ |
| !BN_mod(&dmq1, key->d, &qm1, ctx) || |
| /* iqmp = q^-1 mod p */ |
| !BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| goto out; |
| } |
| |
| if (BN_cmp(&dmp1, key->dmp1) != 0 || |
| BN_cmp(&dmq1, key->dmq1) != 0 || |
| BN_cmp(key->iqmp, key->p) >= 0 || |
| !BN_is_one(&iqmp_times_q)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); |
| goto out; |
| } |
| } |
| |
| ok = 1; |
| |
| out: |
| BN_free(&n); |
| BN_free(&pm1); |
| BN_free(&qm1); |
| BN_free(&lcm); |
| BN_free(&gcd); |
| BN_free(&de); |
| BN_free(&dmp1); |
| BN_free(&dmq1); |
| BN_free(&iqmp_times_q); |
| BN_CTX_free(ctx); |
| |
| return ok; |
| } |
| |
| int RSA_recover_crt_params(RSA *rsa) { |
| BN_CTX *ctx; |
| BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q; |
| int ok = 0; |
| |
| if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
| return 0; |
| } |
| |
| if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_PARAMS_ALREADY_GIVEN); |
| return 0; |
| } |
| |
| if (rsa->additional_primes != NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY); |
| return 0; |
| } |
| |
| /* This uses the algorithm from section 9B of the RSA paper: |
| * http://people.csail.mit.edu/rivest/Rsapaper.pdf */ |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| totient = BN_CTX_get(ctx); |
| rem = BN_CTX_get(ctx); |
| multiple = BN_CTX_get(ctx); |
| p_plus_q = BN_CTX_get(ctx); |
| p_minus_q = BN_CTX_get(ctx); |
| |
| if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL || |
| p_minus_q == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* ed-1 is a small multiple of φ(n). */ |
| if (!BN_mul(totient, rsa->e, rsa->d, ctx) || |
| !BN_sub_word(totient, 1) || |
| /* φ(n) = |
| * pq - p - q + 1 = |
| * n - (p + q) + 1 |
| * |
| * Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very |
| * close. But, when we calculate the quotient, we'll be truncating it |
| * because we discard the remainder. Thus (ed-1)/multiple will be >= n, |
| * which the totient cannot be. So we add one to the estimate. |
| * |
| * Consider ed-1 as: |
| * |
| * multiple * (n - (p+q) + 1) = |
| * multiple*n - multiple*(p+q) + multiple |
| * |
| * When we divide by n, the first term becomes multiple and, since |
| * multiple and p+q is tiny compared to n, the second and third terms can |
| * be ignored. Thus I claim that subtracting one from the estimate is |
| * sufficient. */ |
| !BN_div(multiple, NULL, totient, rsa->n, ctx) || |
| !BN_add_word(multiple, 1) || |
| !BN_div(totient, rem, totient, multiple, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| if (!BN_is_zero(rem)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); |
| goto err; |
| } |
| |
| rsa->p = BN_new(); |
| rsa->q = BN_new(); |
| rsa->dmp1 = BN_new(); |
| rsa->dmq1 = BN_new(); |
| rsa->iqmp = BN_new(); |
| if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 == |
| NULL || rsa->iqmp == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* φ(n) = n - (p + q) + 1 => |
| * n - totient + 1 = p + q */ |
| if (!BN_sub(p_plus_q, rsa->n, totient) || |
| !BN_add_word(p_plus_q, 1) || |
| /* p - q = sqrt((p+q)^2 - 4n) */ |
| !BN_sqr(rem, p_plus_q, ctx) || |
| !BN_lshift(multiple, rsa->n, 2) || |
| !BN_sub(rem, rem, multiple) || |
| !BN_sqrt(p_minus_q, rem, ctx) || |
| /* q is 1/2 (p+q)-(p-q) */ |
| !BN_sub(rsa->q, p_plus_q, p_minus_q) || |
| !BN_rshift1(rsa->q, rsa->q) || |
| !BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) || |
| !BN_mul(multiple, rsa->p, rsa->q, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| if (BN_cmp(multiple, rsa->n) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (!BN_sub(rem, rsa->p, BN_value_one()) || |
| !BN_mod(rsa->dmp1, rsa->d, rem, ctx) || |
| !BN_sub(rem, rsa->q, BN_value_one()) || |
| !BN_mod(rsa->dmq1, rsa->d, rem, ctx) || |
| !BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| if (!ok) { |
| bn_free_and_null(&rsa->p); |
| bn_free_and_null(&rsa->q); |
| bn_free_and_null(&rsa->dmp1); |
| bn_free_and_null(&rsa->dmq1); |
| bn_free_and_null(&rsa->iqmp); |
| } |
| return ok; |
| } |
| |
| int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| if (rsa->meth->private_transform) { |
| return rsa->meth->private_transform(rsa, out, in, len); |
| } |
| |
| return rsa_default_private_transform(rsa, out, in, len); |
| } |
| |
| int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { |
| return 1; |
| } |