| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/bn.h> |
| |
| #include <openssl/err.h> |
| |
| #include "internal.h" |
| |
| |
| int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BIGNUM *n, BN_CTX *ctx) { |
| *out_no_inverse = 0; |
| |
| if (!BN_is_odd(n)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| |
| if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| BIGNUM *A, *B, *X, *Y; |
| int ret = 0; |
| int sign; |
| |
| BN_CTX_start(ctx); |
| A = BN_CTX_get(ctx); |
| B = BN_CTX_get(ctx); |
| X = BN_CTX_get(ctx); |
| Y = BN_CTX_get(ctx); |
| BIGNUM *R = out; |
| if (Y == NULL) { |
| goto err; |
| } |
| |
| BN_zero(Y); |
| if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { |
| goto err; |
| } |
| A->neg = 0; |
| sign = -1; |
| // From B = a mod |n|, A = |n| it follows that |
| // |
| // 0 <= B < A, |
| // -sign*X*a == B (mod |n|), |
| // sign*Y*a == A (mod |n|). |
| |
| // Binary inversion algorithm; requires odd modulus. This is faster than the |
| // general algorithm if the modulus is sufficiently small (about 400 .. 500 |
| // bits on 32-bit systems, but much more on 64-bit systems) |
| int shift; |
| |
| while (!BN_is_zero(B)) { |
| // 0 < B < |n|, |
| // 0 < A <= |n|, |
| // (1) -sign*X*a == B (mod |n|), |
| // (2) sign*Y*a == A (mod |n|) |
| |
| // Now divide B by the maximum possible power of two in the integers, |
| // and divide X by the same value mod |n|. |
| // When we're done, (1) still holds. |
| shift = 0; |
| while (!BN_is_bit_set(B, shift)) { |
| // note that 0 < B |
| shift++; |
| |
| if (BN_is_odd(X)) { |
| if (!BN_uadd(X, X, n)) { |
| goto err; |
| } |
| } |
| // now X is even, so we can easily divide it by two |
| if (!BN_rshift1(X, X)) { |
| goto err; |
| } |
| } |
| if (shift > 0) { |
| if (!BN_rshift(B, B, shift)) { |
| goto err; |
| } |
| } |
| |
| // Same for A and Y. Afterwards, (2) still holds. |
| shift = 0; |
| while (!BN_is_bit_set(A, shift)) { |
| // note that 0 < A |
| shift++; |
| |
| if (BN_is_odd(Y)) { |
| if (!BN_uadd(Y, Y, n)) { |
| goto err; |
| } |
| } |
| // now Y is even |
| if (!BN_rshift1(Y, Y)) { |
| goto err; |
| } |
| } |
| if (shift > 0) { |
| if (!BN_rshift(A, A, shift)) { |
| goto err; |
| } |
| } |
| |
| // We still have (1) and (2). |
| // Both A and B are odd. |
| // The following computations ensure that |
| // |
| // 0 <= B < |n|, |
| // 0 < A < |n|, |
| // (1) -sign*X*a == B (mod |n|), |
| // (2) sign*Y*a == A (mod |n|), |
| // |
| // and that either A or B is even in the next iteration. |
| if (BN_ucmp(B, A) >= 0) { |
| // -sign*(X + Y)*a == B - A (mod |n|) |
| if (!BN_uadd(X, X, Y)) { |
| goto err; |
| } |
| // NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
| // actually makes the algorithm slower |
| if (!BN_usub(B, B, A)) { |
| goto err; |
| } |
| } else { |
| // sign*(X + Y)*a == A - B (mod |n|) |
| if (!BN_uadd(Y, Y, X)) { |
| goto err; |
| } |
| // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
| if (!BN_usub(A, A, B)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (!BN_is_one(A)) { |
| *out_no_inverse = 1; |
| OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| goto err; |
| } |
| |
| // The while loop (Euclid's algorithm) ends when |
| // A == gcd(a,n); |
| // we have |
| // sign*Y*a == A (mod |n|), |
| // where Y is non-negative. |
| |
| if (sign < 0) { |
| if (!BN_sub(Y, n, Y)) { |
| goto err; |
| } |
| } |
| // Now Y*a == A (mod |n|). |
| |
| // Y*a == 1 (mod |n|) |
| if (Y->neg || BN_ucmp(Y, n) >= 0) { |
| if (!BN_nnmod(Y, Y, n, ctx)) { |
| goto err; |
| } |
| } |
| if (!BN_copy(R, Y)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, |
| BN_CTX *ctx) { |
| BIGNUM *new_out = NULL; |
| if (out == NULL) { |
| new_out = BN_new(); |
| if (new_out == NULL) { |
| return NULL; |
| } |
| out = new_out; |
| } |
| |
| int ok = 0; |
| BIGNUM *a_reduced = NULL; |
| if (a->neg || BN_ucmp(a, n) >= 0) { |
| a_reduced = BN_dup(a); |
| if (a_reduced == NULL) { |
| goto err; |
| } |
| if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) { |
| goto err; |
| } |
| a = a_reduced; |
| } |
| |
| int no_inverse; |
| if (!BN_is_odd(n)) { |
| if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) { |
| goto err; |
| } |
| } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| if (!ok) { |
| BN_free(new_out); |
| out = NULL; |
| } |
| BN_free(a_reduced); |
| return out; |
| } |
| |
| int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| *out_no_inverse = 0; |
| |
| // |a| is secret, but it is required to be in range, so these comparisons may |
| // be leaked. |
| if (BN_is_negative(a) || |
| constant_time_declassify_int(BN_cmp(a, &mont->N) >= 0)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| int ret = 0; |
| BIGNUM blinding_factor; |
| BN_init(&blinding_factor); |
| |
| // |BN_mod_inverse_odd| is leaky, so generate a secret blinding factor and |
| // blind |a|. This works because (ar)^-1 * r = a^-1, supposing r is |
| // invertible. If r is not invertible, this function will fail. However, we |
| // only use this in RSA, where stumbling on an uninvertible element means |
| // stumbling on the key's factorization. That is, if this function fails, the |
| // RSA key was not actually a product of two large primes. |
| // |
| // TODO(crbug.com/boringssl/677): When the PRNG output is marked secret by |
| // default, the explicit |bn_secret| call can be removed. |
| if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N)) { |
| goto err; |
| } |
| bn_secret(&blinding_factor); |
| if (!BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx)) { |
| goto err; |
| } |
| |
| // Once blinded, |out| is no longer secret, so it may be passed to a leaky |
| // mod inverse function. Note |blinding_factor| is secret, so |out| will be |
| // secret again after multiplying. |
| bn_declassify(out); |
| if (!BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || |
| !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_free(&blinding_factor); |
| return ret; |
| } |
| |
| int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
| BN_CTX_start(ctx); |
| BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
| int ok = p_minus_2 != NULL && BN_copy(p_minus_2, p) && |
| BN_sub_word(p_minus_2, 2) && |
| BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); |
| BN_CTX_end(ctx); |
| return ok; |
| } |
| |
| int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
| BN_CTX_start(ctx); |
| BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
| int ok = p_minus_2 != NULL && BN_copy(p_minus_2, p) && |
| BN_sub_word(p_minus_2, 2) && |
| BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); |
| BN_CTX_end(ctx); |
| return ok; |
| } |