| /* |
| * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/aes.h> |
| |
| #include <assert.h> |
| |
| #include "internal.h" |
| #include "../modes/internal.h" |
| |
| |
| // Be aware that different sets of AES functions use incompatible key |
| // representations, varying in format of the key schedule, the |AES_KEY.rounds| |
| // value, or both. Therefore they cannot mix. Also, on AArch64, the plain-C |
| // code, above, is incompatible with the |aes_hw_*| functions. |
| |
| void AES_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| if (hwaes_capable()) { |
| aes_hw_encrypt(in, out, key); |
| } else if (vpaes_capable()) { |
| vpaes_encrypt(in, out, key); |
| } else { |
| aes_nohw_encrypt(in, out, key); |
| } |
| } |
| |
| void AES_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| if (hwaes_capable()) { |
| aes_hw_decrypt(in, out, key); |
| } else if (vpaes_capable()) { |
| vpaes_decrypt(in, out, key); |
| } else { |
| aes_nohw_decrypt(in, out, key); |
| } |
| } |
| |
| int AES_set_encrypt_key(const uint8_t *key, unsigned bits, AES_KEY *aeskey) { |
| if (bits != 128 && bits != 192 && bits != 256) { |
| return -2; |
| } |
| if (hwaes_capable()) { |
| return aes_hw_set_encrypt_key(key, bits, aeskey); |
| } else if (vpaes_capable()) { |
| return vpaes_set_encrypt_key(key, bits, aeskey); |
| } else { |
| return aes_nohw_set_encrypt_key(key, bits, aeskey); |
| } |
| } |
| |
| int AES_set_decrypt_key(const uint8_t *key, unsigned bits, AES_KEY *aeskey) { |
| if (bits != 128 && bits != 192 && bits != 256) { |
| return -2; |
| } |
| if (hwaes_capable()) { |
| return aes_hw_set_decrypt_key(key, bits, aeskey); |
| } else if (vpaes_capable()) { |
| return vpaes_set_decrypt_key(key, bits, aeskey); |
| } else { |
| return aes_nohw_set_decrypt_key(key, bits, aeskey); |
| } |
| } |
| |
| #if defined(HWAES) && (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) |
| // On x86 and x86_64, |aes_hw_set_decrypt_key|, we implement |
| // |aes_hw_encrypt_key_to_decrypt_key| in assembly and rely on C code to combine |
| // the operations. |
| int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { |
| int ret = aes_hw_set_encrypt_key(user_key, bits, key); |
| if (ret == 0) { |
| aes_hw_encrypt_key_to_decrypt_key(key); |
| } |
| return ret; |
| } |
| |
| int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) { |
| if (aes_hw_set_encrypt_key_alt_preferred()) { |
| return aes_hw_set_encrypt_key_alt(user_key, bits, key); |
| } else { |
| return aes_hw_set_encrypt_key_base(user_key, bits, key); |
| } |
| } |
| #endif |
| |
| #if defined(VPAES) && defined(OPENSSL_X86) |
| // On x86, there is no |vpaes_ctr32_encrypt_blocks|, so we implement it |
| // ourselves. This avoids all callers needing to account for a missing function. |
| void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks, |
| const AES_KEY *key, const uint8_t iv[16]) { |
| uint32_t ctr = CRYPTO_load_u32_be(iv + 12); |
| uint8_t iv_buf[16], enc[16]; |
| OPENSSL_memcpy(iv_buf, iv, 12); |
| for (size_t i = 0; i < blocks; i++) { |
| CRYPTO_store_u32_be(iv_buf + 12, ctr); |
| vpaes_encrypt(iv_buf, enc, key); |
| CRYPTO_xor16(out, in, enc); |
| ctr++; |
| in += 16; |
| out += 16; |
| } |
| } |
| #endif |
| |
| #if defined(BSAES) |
| void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in, uint8_t *out, |
| size_t blocks, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| // |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|, |
| // but it takes at least one full 8-block batch to amortize the conversion. |
| if (blocks < 8) { |
| vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec); |
| return; |
| } |
| |
| size_t bsaes_blocks = blocks; |
| if (bsaes_blocks % 8 < 6) { |
| // |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the |
| // final batch is too small (under six blocks), it is faster to loop over |
| // |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8. |
| bsaes_blocks -= bsaes_blocks % 8; |
| } |
| |
| AES_KEY bsaes; |
| vpaes_encrypt_key_to_bsaes(&bsaes, key); |
| bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec); |
| OPENSSL_cleanse(&bsaes, sizeof(bsaes)); |
| |
| in += 16 * bsaes_blocks; |
| out += 16 * bsaes_blocks; |
| blocks -= bsaes_blocks; |
| |
| uint8_t new_ivec[16]; |
| memcpy(new_ivec, ivec, 12); |
| uint32_t ctr = CRYPTO_load_u32_be(ivec + 12) + bsaes_blocks; |
| CRYPTO_store_u32_be(new_ivec + 12, ctr); |
| |
| // Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|. |
| vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec); |
| } |
| #endif // BSAES |
| |
| ctr128_f aes_ctr_set_key(AES_KEY *aes_key, int *out_is_hwaes, |
| block128_f *out_block, const uint8_t *key, |
| size_t key_bytes) { |
| // This function assumes the key length was previously validated. |
| assert(key_bytes == 128 / 8 || key_bytes == 192 / 8 || key_bytes == 256 / 8); |
| if (hwaes_capable()) { |
| aes_hw_set_encrypt_key(key, (int)key_bytes * 8, aes_key); |
| if (out_is_hwaes) { |
| *out_is_hwaes = 1; |
| } |
| if (out_block) { |
| *out_block = aes_hw_encrypt; |
| } |
| return aes_hw_ctr32_encrypt_blocks; |
| } |
| |
| if (vpaes_capable()) { |
| vpaes_set_encrypt_key(key, (int)key_bytes * 8, aes_key); |
| if (out_block) { |
| *out_block = vpaes_encrypt; |
| } |
| if (out_is_hwaes) { |
| *out_is_hwaes = 0; |
| } |
| #if defined(BSAES) |
| assert(bsaes_capable()); |
| return vpaes_ctr32_encrypt_blocks_with_bsaes; |
| #else |
| return vpaes_ctr32_encrypt_blocks; |
| #endif |
| } |
| |
| aes_nohw_set_encrypt_key(key, (int)key_bytes * 8, aes_key); |
| if (out_is_hwaes) { |
| *out_is_hwaes = 0; |
| } |
| if (out_block) { |
| *out_block = aes_nohw_encrypt; |
| } |
| return aes_nohw_ctr32_encrypt_blocks; |
| } |