blob: a08cb5f742d5f7eed13207eeed0beabaa7cc57c7 [file] [log] [blame] [edit]
/* Copyright 2016 The BoringSSL Authors
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <utility>
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/bytestring.h>
#include <openssl/chacha.h>
#include <openssl/digest.h>
#include <openssl/hkdf.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include "../crypto/fipsmodule/tls/internal.h"
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
static bool init_key_schedule(SSL_HANDSHAKE *hs, SSLTranscript *transcript,
uint16_t version, const SSL_CIPHER *cipher) {
if (!transcript->InitHash(version, cipher)) {
return false;
}
// Initialize the secret to the zero key.
hs->secret.clear();
hs->secret.Resize(transcript->DigestLen());
return true;
}
static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs,
const SSLTranscript &transcript,
Span<const uint8_t> in) {
size_t len;
if (!HKDF_extract(hs->secret.data(), &len, transcript.Digest(), in.data(),
in.size(), hs->secret.data(), hs->secret.size())) {
return false;
}
assert(len == hs->secret.size());
return true;
}
bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) {
if (!init_key_schedule(hs, &hs->transcript, ssl_protocol_version(hs->ssl),
hs->new_cipher)) {
return false;
}
// Handback includes the whole handshake transcript, so we cannot free the
// transcript buffer in the handback case.
if (!hs->handback) {
hs->transcript.FreeBuffer();
}
return hkdf_extract_to_secret(hs, hs->transcript, psk);
}
bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
const SSL_SESSION *session) {
assert(!hs->ssl->server);
// When offering ECH, early data is associated with ClientHelloInner, not
// ClientHelloOuter.
SSLTranscript *transcript =
hs->selected_ech_config ? &hs->inner_transcript : &hs->transcript;
return init_key_schedule(hs, transcript,
ssl_session_protocol_version(session),
session->cipher) &&
hkdf_extract_to_secret(hs, *transcript, session->secret);
}
static Span<const char> label_to_span(const char *label) {
return MakeConstSpan(label, strlen(label));
}
static bool hkdf_expand_label_with_prefix(Span<uint8_t> out,
const EVP_MD *digest,
Span<const uint8_t> secret,
Span<const uint8_t> label_prefix,
Span<const char> label,
Span<const uint8_t> hash) {
// This is a copy of CRYPTO_tls13_hkdf_expand_label, but modified to take an
// arbitrary prefix for the label instead of using the hardcoded "tls13 "
// prefix.
CBB cbb, child;
uint8_t *hkdf_label = NULL;
size_t hkdf_label_len;
CBB_zero(&cbb);
if (!CBB_init(&cbb,
2 + 1 + label_prefix.size() + label.size() + 1 + hash.size()) ||
!CBB_add_u16(&cbb, out.size()) ||
!CBB_add_u8_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, label_prefix.data(), label_prefix.size()) ||
!CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()),
label.size()) ||
!CBB_add_u8_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, hash.data(), hash.size()) ||
!CBB_finish(&cbb, &hkdf_label, &hkdf_label_len)) {
CBB_cleanup(&cbb);
return false;
}
const int ret = HKDF_expand(out.data(), out.size(), digest, secret.data(),
secret.size(), hkdf_label, hkdf_label_len);
OPENSSL_free(hkdf_label);
return ret == 1;
}
static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest,
Span<const uint8_t> secret,
Span<const char> label, Span<const uint8_t> hash,
bool is_dtls) {
if (is_dtls) {
static const uint8_t kDTLS13LabelPrefix[] = "dtls13";
return hkdf_expand_label_with_prefix(
out, digest, secret,
MakeConstSpan(kDTLS13LabelPrefix, sizeof(kDTLS13LabelPrefix) - 1),
label, hash);
}
return CRYPTO_tls13_hkdf_expand_label(
out.data(), out.size(), digest, secret.data(), secret.size(),
reinterpret_cast<const uint8_t *>(label.data()), label.size(),
hash.data(), hash.size()) == 1;
}
static const char kTLS13LabelDerived[] = "derived";
bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) {
uint8_t derive_context[EVP_MAX_MD_SIZE];
unsigned derive_context_len;
return EVP_Digest(nullptr, 0, derive_context, &derive_context_len,
hs->transcript.Digest(), nullptr) &&
hkdf_expand_label(MakeSpan(hs->secret), hs->transcript.Digest(),
hs->secret, label_to_span(kTLS13LabelDerived),
MakeConstSpan(derive_context, derive_context_len),
SSL_is_dtls(hs->ssl)) &&
hkdf_extract_to_secret(hs, hs->transcript, in);
}
// derive_secret_with_transcript derives a secret of length
// |transcript.DigestLen()| and writes the result in |out| with the given label,
// the current base secret, and the state of |transcript|. It returns true on
// success and false on error.
static bool derive_secret_with_transcript(
const SSL_HANDSHAKE *hs, InplaceVector<uint8_t, SSL_MAX_MD_SIZE> *out,
const SSLTranscript &transcript, Span<const char> label) {
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!transcript.GetHash(context_hash, &context_hash_len)) {
return false;
}
out->ResizeForOverwrite(transcript.DigestLen());
return hkdf_expand_label(MakeSpan(*out), transcript.Digest(), hs->secret,
label, MakeConstSpan(context_hash, context_hash_len),
SSL_is_dtls(hs->ssl));
}
static bool derive_secret(SSL_HANDSHAKE *hs,
InplaceVector<uint8_t, SSL_MAX_MD_SIZE> *out,
Span<const char> label) {
return derive_secret_with_transcript(hs, out, hs->transcript, label);
}
bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
enum evp_aead_direction_t direction,
const SSL_SESSION *session,
Span<const uint8_t> traffic_secret) {
uint16_t version = ssl_session_protocol_version(session);
const EVP_MD *digest = ssl_session_get_digest(session);
bool is_dtls = SSL_is_dtls(ssl);
UniquePtr<SSLAEADContext> traffic_aead;
if (SSL_is_quic(ssl)) {
// Install a placeholder SSLAEADContext so that SSL accessors work. The
// encryption itself will be handled by the SSL_QUIC_METHOD.
traffic_aead = SSLAEADContext::CreatePlaceholderForQUIC(session->cipher);
} else {
// Look up cipher suite properties.
const EVP_AEAD *aead;
size_t discard;
if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher,
version)) {
return false;
}
// Derive the key and IV.
uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH], iv_buf[EVP_AEAD_MAX_NONCE_LENGTH];
auto key = MakeSpan(key_buf).first(EVP_AEAD_key_length(aead));
auto iv = MakeSpan(iv_buf).first(EVP_AEAD_nonce_length(aead));
if (!hkdf_expand_label(key, digest, traffic_secret, label_to_span("key"),
{}, is_dtls) ||
!hkdf_expand_label(iv, digest, traffic_secret, label_to_span("iv"), {},
is_dtls)) {
return false;
}
traffic_aead = SSLAEADContext::Create(direction, session->ssl_version,
session->cipher, key, {}, iv);
}
if (!traffic_aead) {
return false;
}
if (direction == evp_aead_open) {
if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead),
traffic_secret)) {
return false;
}
ssl->s3->read_traffic_secret.CopyFrom(traffic_secret);
} else {
if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead),
traffic_secret)) {
return false;
}
ssl->s3->write_traffic_secret.CopyFrom(traffic_secret);
}
return true;
}
namespace {
class AESRecordNumberEncrypter : public RecordNumberEncrypter {
public:
bool SetKey(Span<const uint8_t> key) override {
return AES_set_encrypt_key(key.data(), key.size() * 8, &key_) == 0;
}
bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override {
if (sample.size() < AES_BLOCK_SIZE || out.size() > AES_BLOCK_SIZE) {
return false;
}
uint8_t mask[AES_BLOCK_SIZE];
AES_encrypt(sample.data(), mask, &key_);
OPENSSL_memcpy(out.data(), mask, out.size());
return true;
}
private:
AES_KEY key_;
};
class AES128RecordNumberEncrypter : public AESRecordNumberEncrypter {
public:
size_t KeySize() override { return 16; }
};
class AES256RecordNumberEncrypter : public AESRecordNumberEncrypter {
public:
size_t KeySize() override { return 32; }
};
class ChaChaRecordNumberEncrypter : public RecordNumberEncrypter {
public:
size_t KeySize() override { return kKeySize; }
bool SetKey(Span<const uint8_t> key) override {
if (key.size() != kKeySize) {
return false;
}
OPENSSL_memcpy(key_, key.data(), key.size());
return true;
}
bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override {
// RFC 9147 section 4.2.3 uses the first 4 bytes of the sample as the
// counter and the next 12 bytes as the nonce. If we have less than 4+12=16
// bytes in the sample, then we'll read past the end of the |sample| buffer.
// The counter is interpreted as little-endian per RFC 8439.
if (sample.size() < 16) {
return false;
}
uint32_t counter = CRYPTO_load_u32_le(sample.data());
Span<const uint8_t> nonce = sample.subspan(4);
OPENSSL_memset(out.data(), 0, out.size());
CRYPTO_chacha_20(out.data(), out.data(), out.size(), key_, nonce.data(),
counter);
return true;
}
private:
static constexpr size_t kKeySize = 32;
uint8_t key_[kKeySize];
};
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
class NullRecordNumberEncrypter : public RecordNumberEncrypter {
public:
size_t KeySize() override { return 0; }
bool SetKey(Span<const uint8_t> key) override { return true; }
bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override {
OPENSSL_memset(out.data(), 0, out.size());
return true;
}
};
#endif // BORINGSSL_UNSAFE_FUZZER_MODE
} // namespace
UniquePtr<RecordNumberEncrypter> RecordNumberEncrypter::Create(
const SSL_CIPHER *cipher, Span<const uint8_t> traffic_secret) {
const EVP_MD *digest = ssl_get_handshake_digest(TLS1_3_VERSION, cipher);
UniquePtr<RecordNumberEncrypter> ret;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
ret = MakeUnique<NullRecordNumberEncrypter>();
#else
if (cipher->algorithm_enc == SSL_AES128GCM) {
ret = MakeUnique<AES128RecordNumberEncrypter>();
} else if (cipher->algorithm_enc == SSL_AES256GCM) {
ret = MakeUnique<AES256RecordNumberEncrypter>();
} else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
ret = MakeUnique<ChaChaRecordNumberEncrypter>();
} else {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
}
#endif // BORINGSSL_UNSAFE_FUZZER_MODE
if (ret == nullptr) {
return nullptr;
}
uint8_t rne_key_buf[RecordNumberEncrypter::kMaxKeySize];
auto rne_key = MakeSpan(rne_key_buf).first(ret->KeySize());
if (!hkdf_expand_label(rne_key, digest, traffic_secret, label_to_span("sn"),
{}, /*is_dtls=*/true) ||
!ret->SetKey(rne_key)) {
return nullptr;
}
return ret;
}
static const char kTLS13LabelExporter[] = "exp master";
static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic";
static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic";
static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic";
static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic";
static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic";
bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// When offering ECH on the client, early data is associated with
// ClientHelloInner, not ClientHelloOuter.
const SSLTranscript &transcript = (!ssl->server && hs->selected_ech_config)
? hs->inner_transcript
: hs->transcript;
if (!derive_secret_with_transcript(
hs, &hs->early_traffic_secret, transcript,
label_to_span(kTLS13LabelClientEarlyTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET",
hs->early_traffic_secret)) {
return false;
}
return true;
}
bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!derive_secret(hs, &hs->client_handshake_secret,
label_to_span(kTLS13LabelClientHandshakeTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET",
hs->client_handshake_secret) ||
!derive_secret(hs, &hs->server_handshake_secret,
label_to_span(kTLS13LabelServerHandshakeTraffic)) ||
!ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET",
hs->server_handshake_secret)) {
return false;
}
return true;
}
bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!derive_secret(hs, &hs->client_traffic_secret_0,
label_to_span(kTLS13LabelClientApplicationTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0",
hs->client_traffic_secret_0) ||
!derive_secret(hs, &hs->server_traffic_secret_0,
label_to_span(kTLS13LabelServerApplicationTraffic)) ||
!ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0",
hs->server_traffic_secret_0) ||
!derive_secret(hs, &ssl->s3->exporter_secret,
label_to_span(kTLS13LabelExporter)) ||
!ssl_log_secret(ssl, "EXPORTER_SECRET", ssl->s3->exporter_secret)) {
return false;
}
return true;
}
static const char kTLS13LabelApplicationTraffic[] = "traffic upd";
bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) {
Span<uint8_t> secret = direction == evp_aead_open
? MakeSpan(ssl->s3->read_traffic_secret)
: MakeSpan(ssl->s3->write_traffic_secret);
const SSL_SESSION *session = SSL_get_session(ssl);
const EVP_MD *digest = ssl_session_get_digest(session);
return hkdf_expand_label(secret, digest, secret,
label_to_span(kTLS13LabelApplicationTraffic), {},
SSL_is_dtls(ssl)) &&
tls13_set_traffic_key(ssl, ssl_encryption_application, direction,
session, secret);
}
static const char kTLS13LabelResumption[] = "res master";
bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) {
return derive_secret(hs, &hs->new_session->secret,
label_to_span(kTLS13LabelResumption));
}
static const char kTLS13LabelFinished[] = "finished";
// tls13_verify_data sets |out| to be the HMAC of |context| using a derived
// Finished key for both Finished messages and the PSK binder. |out| must have
// space available for |EVP_MAX_MD_SIZE| bytes.
static bool tls13_verify_data(uint8_t *out, size_t *out_len,
const EVP_MD *digest, uint16_t version,
Span<const uint8_t> secret,
Span<const uint8_t> context, bool is_dtls) {
uint8_t key_buf[EVP_MAX_MD_SIZE];
auto key = MakeSpan(key_buf, EVP_MD_size(digest));
unsigned len;
if (!hkdf_expand_label(key, digest, secret,
label_to_span(kTLS13LabelFinished), {}, is_dtls) ||
HMAC(digest, key.data(), key.size(), context.data(), context.size(), out,
&len) == nullptr) {
return false;
}
*out_len = len;
return true;
}
bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
bool is_server) {
Span<const uint8_t> traffic_secret =
is_server ? hs->server_handshake_secret : hs->client_handshake_secret;
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!hs->transcript.GetHash(context_hash, &context_hash_len) ||
!tls13_verify_data(out, out_len, hs->transcript.Digest(),
hs->ssl->s3->version, traffic_secret,
MakeConstSpan(context_hash, context_hash_len),
SSL_is_dtls(hs->ssl))) {
return false;
}
return true;
}
static const char kTLS13LabelResumptionPSK[] = "resumption";
bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce,
bool is_dtls) {
const EVP_MD *digest = ssl_session_get_digest(session);
// The session initially stores the resumption_master_secret, which we
// override with the PSK.
assert(session->secret.size() == EVP_MD_size(digest));
return hkdf_expand_label(MakeSpan(session->secret), digest, session->secret,
label_to_span(kTLS13LabelResumptionPSK), nonce,
is_dtls);
}
static const char kTLS13LabelExportKeying[] = "exporter";
bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
Span<const uint8_t> secret,
Span<const char> label,
Span<const uint8_t> context) {
if (secret.empty()) {
assert(0);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl));
uint8_t hash_buf[EVP_MAX_MD_SIZE];
uint8_t export_context_buf[EVP_MAX_MD_SIZE];
unsigned hash_len;
unsigned export_context_len;
if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest,
nullptr) ||
!EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest,
nullptr)) {
return false;
}
auto hash = MakeConstSpan(hash_buf, hash_len);
auto export_context = MakeConstSpan(export_context_buf, export_context_len);
uint8_t derived_secret_buf[EVP_MAX_MD_SIZE];
auto derived_secret = MakeSpan(derived_secret_buf, EVP_MD_size(digest));
return hkdf_expand_label(derived_secret, digest, secret, label,
export_context, SSL_is_dtls(ssl)) &&
hkdf_expand_label(out, digest, derived_secret,
label_to_span(kTLS13LabelExportKeying), hash,
SSL_is_dtls(ssl));
}
static const char kTLS13LabelPSKBinder[] = "res binder";
static bool tls13_psk_binder(uint8_t *out, size_t *out_len,
const SSL_SESSION *session,
const SSLTranscript &transcript,
Span<const uint8_t> client_hello,
size_t binders_len, bool is_dtls) {
const EVP_MD *digest = ssl_session_get_digest(session);
// Compute the binder key.
//
// TODO(davidben): Ideally we wouldn't recompute early secret and the binder
// key each time.
uint8_t binder_context[EVP_MAX_MD_SIZE];
unsigned binder_context_len;
uint8_t early_secret[EVP_MAX_MD_SIZE] = {0};
size_t early_secret_len;
uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0};
auto binder_key = MakeSpan(binder_key_buf, EVP_MD_size(digest));
if (!EVP_Digest(nullptr, 0, binder_context, &binder_context_len, digest,
nullptr) ||
!HKDF_extract(early_secret, &early_secret_len, digest,
session->secret.data(), session->secret.size(), nullptr,
0) ||
!hkdf_expand_label(
binder_key, digest, MakeConstSpan(early_secret, early_secret_len),
label_to_span(kTLS13LabelPSKBinder),
MakeConstSpan(binder_context, binder_context_len), is_dtls)) {
return false;
}
// Hash the transcript and truncated ClientHello.
if (client_hello.size() < binders_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
auto truncated = client_hello.subspan(0, client_hello.size() - binders_len);
uint8_t context[EVP_MAX_MD_SIZE];
unsigned context_len;
ScopedEVP_MD_CTX ctx;
if (!is_dtls) {
if (!transcript.CopyToHashContext(ctx.get(), digest) ||
!EVP_DigestUpdate(ctx.get(), truncated.data(), truncated.size()) ||
!EVP_DigestFinal_ex(ctx.get(), context, &context_len)) {
return false;
}
} else {
// In DTLS 1.3, the transcript hash is computed over only the TLS 1.3
// handshake messages (i.e. only type and length in the header), not the
// full DTLSHandshake messages that are in |truncated|. This code pulls
// the header and body out of the truncated ClientHello and writes those
// to the hash context so the correct binder value is computed.
if (truncated.size() < DTLS1_HM_HEADER_LENGTH) {
return false;
}
auto header = truncated.subspan(0, 4);
auto body = truncated.subspan(12);
if (!transcript.CopyToHashContext(ctx.get(), digest) ||
!EVP_DigestUpdate(ctx.get(), header.data(), header.size()) ||
!EVP_DigestUpdate(ctx.get(), body.data(), body.size()) ||
!EVP_DigestFinal_ex(ctx.get(), context, &context_len)) {
return false;
}
}
if (!tls13_verify_data(out, out_len, digest, session->ssl_version, binder_key,
MakeConstSpan(context, context_len), is_dtls)) {
return false;
}
assert(*out_len == EVP_MD_size(digest));
return true;
}
bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
const SSLTranscript &transcript, Span<uint8_t> msg,
size_t *out_binder_len) {
const SSL *const ssl = hs->ssl;
const EVP_MD *digest = ssl_session_get_digest(ssl->session.get());
const size_t hash_len = EVP_MD_size(digest);
// We only offer one PSK, so the binders are a u16 and u8 length
// prefix, followed by the binder. The caller is assumed to have constructed
// |msg| with placeholder binders.
const size_t binders_len = 3 + hash_len;
uint8_t verify_data[EVP_MAX_MD_SIZE];
size_t verify_data_len;
if (!tls13_psk_binder(verify_data, &verify_data_len, ssl->session.get(),
transcript, msg, binders_len, SSL_is_dtls(hs->ssl)) ||
verify_data_len != hash_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
auto msg_binder = msg.last(verify_data_len);
OPENSSL_memcpy(msg_binder.data(), verify_data, verify_data_len);
if (out_binder_len != nullptr) {
*out_binder_len = verify_data_len;
}
return true;
}
bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
const SSL_SESSION *session, const SSLMessage &msg,
CBS *binders) {
uint8_t verify_data[EVP_MAX_MD_SIZE];
size_t verify_data_len;
CBS binder;
// The binders are computed over |msg| with |binders| and its u16 length
// prefix removed. The caller is assumed to have parsed |msg|, extracted
// |binders|, and verified the PSK extension is last.
if (!tls13_psk_binder(verify_data, &verify_data_len, session, hs->transcript,
msg.raw, 2 + CBS_len(binders), SSL_is_dtls(hs->ssl)) ||
// We only consider the first PSK, so compare against the first binder.
!CBS_get_u8_length_prefixed(binders, &binder)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
bool binder_ok =
CBS_len(&binder) == verify_data_len &&
CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
binder_ok = true;
#endif
if (!binder_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
return false;
}
return true;
}
size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl) {
static_assert(ECH_CONFIRMATION_SIGNAL_LEN < SSL3_RANDOM_SIZE,
"the confirmation signal is a suffix of the random");
const size_t header_len =
SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH;
return header_len + 2 /* version */ + SSL3_RANDOM_SIZE -
ECH_CONFIRMATION_SIGNAL_LEN;
}
bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
Span<const uint8_t> client_random,
const SSLTranscript &transcript, bool is_hrr,
Span<const uint8_t> msg, size_t offset) {
// See draft-ietf-tls-esni-13, sections 7.2 and 7.2.1.
static const uint8_t kZeros[EVP_MAX_MD_SIZE] = {0};
// We hash |msg|, with bytes from |offset| zeroed.
if (msg.size() < offset + ECH_CONFIRMATION_SIGNAL_LEN) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
// We represent DTLS messages with the longer DTLS 1.2 header, but DTLS 1.3
// removes the extra fields from the transcript.
auto header = msg.subspan(0, SSL3_HM_HEADER_LENGTH);
size_t full_header_len =
SSL_is_dtls(hs->ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH;
auto before_zeros = msg.subspan(full_header_len, offset - full_header_len);
auto after_zeros = msg.subspan(offset + ECH_CONFIRMATION_SIGNAL_LEN);
uint8_t context[EVP_MAX_MD_SIZE];
unsigned context_len;
ScopedEVP_MD_CTX ctx;
if (!transcript.CopyToHashContext(ctx.get(), transcript.Digest()) ||
!EVP_DigestUpdate(ctx.get(), header.data(), header.size()) ||
!EVP_DigestUpdate(ctx.get(), before_zeros.data(), before_zeros.size()) ||
!EVP_DigestUpdate(ctx.get(), kZeros, ECH_CONFIRMATION_SIGNAL_LEN) ||
!EVP_DigestUpdate(ctx.get(), after_zeros.data(), after_zeros.size()) ||
!EVP_DigestFinal_ex(ctx.get(), context, &context_len)) {
return false;
}
uint8_t secret[EVP_MAX_MD_SIZE];
size_t secret_len;
if (!HKDF_extract(secret, &secret_len, transcript.Digest(),
client_random.data(), client_random.size(), kZeros,
transcript.DigestLen())) {
return false;
}
assert(out.size() == ECH_CONFIRMATION_SIGNAL_LEN);
return hkdf_expand_label(
out, transcript.Digest(), MakeConstSpan(secret, secret_len),
is_hrr ? label_to_span("hrr ech accept confirmation")
: label_to_span("ech accept confirmation"),
MakeConstSpan(context, context_len), SSL_is_dtls(hs->ssl));
}
BSSL_NAMESPACE_END