blob: 4ede3ad282b30b84df70a24ed9b89c516cddae4e [file] [log] [blame] [edit]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <openssl/ssl.h>
#include <algorithm>
#include <assert.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/lhash.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include "../crypto/internal.h"
#include "internal.h"
#if defined(OPENSSL_WINDOWS)
#include <sys/timeb.h>
#else
#include <sys/socket.h>
#include <sys/time.h>
#endif
BSSL_NAMESPACE_BEGIN
static_assert(SSL3_RT_MAX_ENCRYPTED_OVERHEAD >=
SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD,
"max overheads are inconsistent");
// |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it
// to avoid downstream churn.
OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL)
// The following errors are no longer emitted, but are used in nginx without
// #ifdefs.
OPENSSL_DECLARE_ERROR_REASON(SSL, BLOCK_CIPHER_PAD_IS_WRONG)
OPENSSL_DECLARE_ERROR_REASON(SSL, NO_CIPHERS_SPECIFIED)
// Some error codes are special. Ensure the make_errors.go script never
// regresses this.
static_assert(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION ==
SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET,
"alert reason code mismatch");
// kMaxHandshakeSize is the maximum size, in bytes, of a handshake message.
static const size_t kMaxHandshakeSize = (1u << 24) - 1;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl =
CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx =
CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out) {
uint8_t *ptr;
size_t len;
if (!CBB_finish(cbb, &ptr, &len)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
out->Reset(ptr, len);
return true;
}
void ssl_reset_error_state(SSL *ssl) {
// Functions which use |SSL_get_error| must reset I/O and error state on
// entry.
ssl->s3->rwstate = SSL_ERROR_NONE;
ERR_clear_error();
ERR_clear_system_error();
}
void ssl_set_read_error(SSL *ssl) {
ssl->s3->read_shutdown = ssl_shutdown_error;
ssl->s3->read_error.reset(ERR_save_state());
}
static bool check_read_error(const SSL *ssl) {
if (ssl->s3->read_shutdown == ssl_shutdown_error) {
ERR_restore_state(ssl->s3->read_error.get());
return false;
}
return true;
}
bool ssl_can_write(const SSL *ssl) {
return !SSL_in_init(ssl) || ssl->s3->hs->can_early_write;
}
bool ssl_can_read(const SSL *ssl) {
return !SSL_in_init(ssl) || ssl->s3->hs->can_early_read;
}
ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
uint8_t *out_alert, Span<uint8_t> in) {
*out_consumed = 0;
if (!check_read_error(ssl)) {
*out_alert = 0;
return ssl_open_record_error;
}
auto ret = ssl->method->open_handshake(ssl, out_consumed, out_alert, in);
if (ret == ssl_open_record_error) {
ssl_set_read_error(ssl);
}
return ret;
}
ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
uint8_t *out_alert,
Span<uint8_t> in) {
*out_consumed = 0;
if (!check_read_error(ssl)) {
*out_alert = 0;
return ssl_open_record_error;
}
auto ret =
ssl->method->open_change_cipher_spec(ssl, out_consumed, out_alert, in);
if (ret == ssl_open_record_error) {
ssl_set_read_error(ssl);
}
return ret;
}
ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
size_t *out_consumed, uint8_t *out_alert,
Span<uint8_t> in) {
*out_consumed = 0;
if (!check_read_error(ssl)) {
*out_alert = 0;
return ssl_open_record_error;
}
auto ret = ssl->method->open_app_data(ssl, out, out_consumed, out_alert, in);
if (ret == ssl_open_record_error) {
ssl_set_read_error(ssl);
}
return ret;
}
static uint8_t hex_char_consttime(uint8_t b) {
declassify_assert(b < 16);
return constant_time_select_8(constant_time_lt_8(b, 10), b + '0',
b - 10 + 'a');
}
static bool cbb_add_hex_consttime(CBB *cbb, Span<const uint8_t> in) {
uint8_t *out;
if (!CBB_add_space(cbb, &out, in.size() * 2)) {
return false;
}
for (uint8_t b : in) {
*(out++) = hex_char_consttime(b >> 4);
*(out++) = hex_char_consttime(b & 0xf);
}
return true;
}
bool ssl_log_secret(const SSL *ssl, const char *label,
Span<const uint8_t> secret) {
if (ssl->ctx->keylog_callback == NULL) {
return true;
}
ScopedCBB cbb;
Array<uint8_t> line;
if (!CBB_init(cbb.get(), strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 +
secret.size() * 2 + 1) ||
!CBB_add_bytes(cbb.get(), reinterpret_cast<const uint8_t *>(label),
strlen(label)) ||
!CBB_add_u8(cbb.get(), ' ') ||
!cbb_add_hex_consttime(cbb.get(), ssl->s3->client_random) ||
!CBB_add_u8(cbb.get(), ' ') ||
// Convert to hex in constant time to avoid leaking |secret|. If the
// callback discards the data, we should not introduce side channels.
!cbb_add_hex_consttime(cbb.get(), secret) ||
!CBB_add_u8(cbb.get(), 0 /* NUL */) ||
!CBBFinishArray(cbb.get(), &line)) {
return false;
}
ssl->ctx->keylog_callback(ssl, reinterpret_cast<const char *>(line.data()));
return true;
}
void ssl_do_info_callback(const SSL *ssl, int type, int value) {
void (*cb)(const SSL *ssl, int type, int value) = NULL;
if (ssl->info_callback != NULL) {
cb = ssl->info_callback;
} else if (ssl->ctx->info_callback != NULL) {
cb = ssl->ctx->info_callback;
}
if (cb != NULL) {
cb(ssl, type, value);
}
}
void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
Span<const uint8_t> in) {
if (ssl->msg_callback == NULL) {
return;
}
// |version| is zero when calling for |SSL3_RT_HEADER| and |SSL2_VERSION| for
// a V2ClientHello.
int version;
switch (content_type) {
case 0:
// V2ClientHello
version = SSL2_VERSION;
break;
case SSL3_RT_HEADER:
version = 0;
break;
default:
version = SSL_version(ssl);
}
ssl->msg_callback(is_write, version, content_type, in.data(), in.size(),
const_cast<SSL *>(ssl), ssl->msg_callback_arg);
}
OPENSSL_timeval ssl_ctx_get_current_time(const SSL_CTX *ctx) {
if (ctx->current_time_cb != NULL) {
// TODO(davidben): Update current_time_cb to use OPENSSL_timeval. See
// https://crbug.com/boringssl/155.
struct timeval clock;
ctx->current_time_cb(nullptr /* ssl */, &clock);
if (clock.tv_sec < 0) {
assert(0);
return {0, 0};
} else {
return {static_cast<uint64_t>(clock.tv_sec),
static_cast<uint32_t>(clock.tv_usec)};
}
}
#if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
return {1234, 1234};
#elif defined(OPENSSL_WINDOWS)
struct _timeb time;
_ftime(&time);
if (time.time < 0) {
assert(0);
return {0, 0};
} else {
return {static_cast<uint64_t>(time.time),
static_cast<uint32_t>(time.millitm * 1000)};
}
#else
struct timeval clock;
gettimeofday(&clock, NULL);
if (clock.tv_sec < 0) {
assert(0);
return {0, 0};
} else {
return {static_cast<uint64_t>(clock.tv_sec),
static_cast<uint32_t>(clock.tv_usec)};
}
#endif
}
void SSL_CTX_set_handoff_mode(SSL_CTX *ctx, bool on) { ctx->handoff = on; }
static bool ssl_can_renegotiate(const SSL *ssl) {
if (ssl->server || SSL_is_dtls(ssl)) {
return false;
}
if (ssl->s3->version != 0 //
&& ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return false;
}
// The config has already been shed.
if (!ssl->config) {
return false;
}
switch (ssl->renegotiate_mode) {
case ssl_renegotiate_ignore:
case ssl_renegotiate_never:
return false;
case ssl_renegotiate_freely:
case ssl_renegotiate_explicit:
return true;
case ssl_renegotiate_once:
return ssl->s3->total_renegotiations == 0;
}
assert(0);
return false;
}
static void ssl_maybe_shed_handshake_config(SSL *ssl) {
if (ssl->s3->hs != nullptr || //
ssl->config == nullptr || //
!ssl->config->shed_handshake_config || //
ssl_can_renegotiate(ssl)) {
return;
}
ssl->config.reset();
}
void SSL_set_handoff_mode(SSL *ssl, bool on) {
if (!ssl->config) {
return;
}
ssl->config->handoff = on;
}
bool SSL_get_traffic_secrets(const SSL *ssl,
Span<const uint8_t> *out_read_traffic_secret,
Span<const uint8_t> *out_write_traffic_secret) {
// This API is not well-defined for DTLS 1.3 (see https://crbug.com/42290608)
// or QUIC, where multiple epochs may be alive at once.
if (SSL_is_dtls(ssl) || SSL_is_quic(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return false;
}
if (!ssl->s3->initial_handshake_complete) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return false;
}
if (SSL_version(ssl) < TLS1_3_VERSION) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
return false;
}
*out_read_traffic_secret = ssl->s3->read_traffic_secret;
*out_write_traffic_secret = ssl->s3->write_traffic_secret;
return true;
}
void SSL_CTX_set_aes_hw_override_for_testing(SSL_CTX *ctx,
bool override_value) {
ctx->aes_hw_override = true;
ctx->aes_hw_override_value = override_value;
}
void SSL_set_aes_hw_override_for_testing(SSL *ssl, bool override_value) {
ssl->config->aes_hw_override = true;
ssl->config->aes_hw_override_value = override_value;
}
BSSL_NAMESPACE_END
using namespace bssl;
int SSL_library_init(void) { return 1; }
int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings) {
return 1;
}
static uint32_t ssl_session_hash(const SSL_SESSION *sess) {
return ssl_hash_session_id(sess->session_id);
}
static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) {
return MakeConstSpan(a->session_id) == b->session_id ? 0 : 1;
}
ssl_ctx_st::ssl_ctx_st(const SSL_METHOD *ssl_method)
: RefCounted(CheckSubClass()),
method(ssl_method->method),
x509_method(ssl_method->x509_method),
retain_only_sha256_of_client_certs(false),
quiet_shutdown(false),
ocsp_stapling_enabled(false),
signed_cert_timestamps_enabled(false),
channel_id_enabled(false),
grease_enabled(false),
permute_extensions(false),
allow_unknown_alpn_protos(false),
false_start_allowed_without_alpn(false),
handoff(false),
enable_early_data(false),
aes_hw_override(false),
aes_hw_override_value(false) {
CRYPTO_MUTEX_init(&lock);
CRYPTO_new_ex_data(&ex_data);
}
ssl_ctx_st::~ssl_ctx_st() {
// Free the internal session cache. Note that this calls the caller-supplied
// remove callback, so we must do it before clearing ex_data. (See ticket
// [openssl.org #212].)
SSL_CTX_flush_sessions(this, 0);
CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, this, &ex_data);
CRYPTO_MUTEX_cleanup(&lock);
lh_SSL_SESSION_free(sessions);
x509_method->ssl_ctx_free(this);
}
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) {
if (method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED);
return nullptr;
}
UniquePtr<SSL_CTX> ret = MakeUnique<SSL_CTX>(method);
if (!ret) {
return nullptr;
}
ret->cert = MakeUnique<CERT>(method->x509_method);
ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
ret->client_CA.reset(sk_CRYPTO_BUFFER_new_null());
ret->CA_names.reset(sk_CRYPTO_BUFFER_new_null());
if (ret->cert == nullptr || //
!ret->cert->is_valid() || //
ret->sessions == nullptr || //
ret->client_CA == nullptr || //
ret->CA_names == nullptr || //
!ret->x509_method->ssl_ctx_new(ret.get())) {
return nullptr;
}
if (!SSL_CTX_set_strict_cipher_list(ret.get(), SSL_DEFAULT_CIPHER_LIST) ||
// Lock the SSL_CTX to the specified version, for compatibility with
// legacy uses of SSL_METHOD.
!SSL_CTX_set_max_proto_version(ret.get(), method->version) ||
!SSL_CTX_set_min_proto_version(ret.get(), method->version)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return nullptr;
}
return ret.release();
}
int SSL_CTX_up_ref(SSL_CTX *ctx) {
ctx->UpRefInternal();
return 1;
}
void SSL_CTX_free(SSL_CTX *ctx) {
if (ctx != nullptr) {
ctx->DecRefInternal();
}
}
ssl_st::ssl_st(SSL_CTX *ctx_arg)
: method(ctx_arg->method),
max_send_fragment(ctx_arg->max_send_fragment),
msg_callback(ctx_arg->msg_callback),
msg_callback_arg(ctx_arg->msg_callback_arg),
ctx(UpRef(ctx_arg)),
session_ctx(UpRef(ctx_arg)),
options(ctx->options),
mode(ctx->mode),
max_cert_list(ctx->max_cert_list),
server(false),
quiet_shutdown(ctx->quiet_shutdown),
enable_early_data(ctx->enable_early_data) {
CRYPTO_new_ex_data(&ex_data);
}
ssl_st::~ssl_st() {
CRYPTO_free_ex_data(&g_ex_data_class_ssl, this, &ex_data);
// |config| refers to |this|, so we must release it earlier.
config.reset();
if (method != NULL) {
method->ssl_free(this);
}
}
SSL *SSL_new(SSL_CTX *ctx) {
if (ctx == nullptr) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX);
return nullptr;
}
UniquePtr<SSL> ssl = MakeUnique<SSL>(ctx);
if (ssl == nullptr) {
return nullptr;
}
ssl->config = MakeUnique<SSL_CONFIG>(ssl.get());
if (ssl->config == nullptr) {
return nullptr;
}
ssl->config->conf_min_version = ctx->conf_min_version;
ssl->config->conf_max_version = ctx->conf_max_version;
ssl->config->cert = ssl_cert_dup(ctx->cert.get());
if (ssl->config->cert == nullptr) {
return nullptr;
}
ssl->config->verify_mode = ctx->verify_mode;
ssl->config->verify_callback = ctx->default_verify_callback;
ssl->config->custom_verify_callback = ctx->custom_verify_callback;
ssl->config->retain_only_sha256_of_client_certs =
ctx->retain_only_sha256_of_client_certs;
ssl->config->permute_extensions = ctx->permute_extensions;
ssl->config->aes_hw_override = ctx->aes_hw_override;
ssl->config->aes_hw_override_value = ctx->aes_hw_override_value;
ssl->config->compliance_policy = ctx->compliance_policy;
if (!ssl->config->supported_group_list.CopyFrom(ctx->supported_group_list) ||
!ssl->config->alpn_client_proto_list.CopyFrom(
ctx->alpn_client_proto_list) ||
!ssl->config->verify_sigalgs.CopyFrom(ctx->verify_sigalgs)) {
return nullptr;
}
if (ctx->psk_identity_hint) {
ssl->config->psk_identity_hint.reset(
OPENSSL_strdup(ctx->psk_identity_hint.get()));
if (ssl->config->psk_identity_hint == nullptr) {
return nullptr;
}
}
ssl->config->psk_client_callback = ctx->psk_client_callback;
ssl->config->psk_server_callback = ctx->psk_server_callback;
ssl->config->channel_id_enabled = ctx->channel_id_enabled;
ssl->config->channel_id_private = UpRef(ctx->channel_id_private);
ssl->config->signed_cert_timestamps_enabled =
ctx->signed_cert_timestamps_enabled;
ssl->config->ocsp_stapling_enabled = ctx->ocsp_stapling_enabled;
ssl->config->handoff = ctx->handoff;
ssl->quic_method = ctx->quic_method;
if (!ssl->method->ssl_new(ssl.get()) ||
!ssl->ctx->x509_method->ssl_new(ssl->s3->hs.get())) {
return nullptr;
}
return ssl.release();
}
SSL_CONFIG::SSL_CONFIG(SSL *ssl_arg)
: ssl(ssl_arg),
ech_grease_enabled(false),
signed_cert_timestamps_enabled(false),
ocsp_stapling_enabled(false),
channel_id_enabled(false),
enforce_rsa_key_usage(true),
retain_only_sha256_of_client_certs(false),
handoff(false),
shed_handshake_config(false),
jdk11_workaround(false),
quic_use_legacy_codepoint(false),
permute_extensions(false),
alps_use_new_codepoint(false),
check_client_certificate_type(true),
check_ecdsa_curve(true) {
assert(ssl);
}
SSL_CONFIG::~SSL_CONFIG() {
if (ssl->ctx != nullptr) {
ssl->ctx->x509_method->ssl_config_free(this);
}
}
void SSL_free(SSL *ssl) { Delete(ssl); }
void SSL_set_connect_state(SSL *ssl) {
ssl->server = false;
ssl->do_handshake = ssl_client_handshake;
}
void SSL_set_accept_state(SSL *ssl) {
ssl->server = true;
ssl->do_handshake = ssl_server_handshake;
}
void SSL_set0_rbio(SSL *ssl, BIO *rbio) { ssl->rbio.reset(rbio); }
void SSL_set0_wbio(SSL *ssl, BIO *wbio) { ssl->wbio.reset(wbio); }
void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) {
// For historical reasons, this function has many different cases in ownership
// handling.
// If nothing has changed, do nothing
if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) {
return;
}
// If the two arguments are equal, one fewer reference is granted than
// taken.
if (rbio != NULL && rbio == wbio) {
BIO_up_ref(rbio);
}
// If only the wbio is changed, adopt only one reference.
if (rbio == SSL_get_rbio(ssl)) {
SSL_set0_wbio(ssl, wbio);
return;
}
// There is an asymmetry here for historical reasons. If only the rbio is
// changed AND the rbio and wbio were originally different, then we only adopt
// one reference.
if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) {
SSL_set0_rbio(ssl, rbio);
return;
}
// Otherwise, adopt both references.
SSL_set0_rbio(ssl, rbio);
SSL_set0_wbio(ssl, wbio);
}
BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio.get(); }
BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio.get(); }
size_t SSL_quic_max_handshake_flight_len(const SSL *ssl,
enum ssl_encryption_level_t level) {
// Limits flights to 16K by default when there are no large
// (certificate-carrying) messages.
static const size_t kDefaultLimit = 16384;
switch (level) {
case ssl_encryption_initial:
return kDefaultLimit;
case ssl_encryption_early_data:
// QUIC does not send EndOfEarlyData.
return 0;
case ssl_encryption_handshake:
if (ssl->server) {
// Servers may receive Certificate message if configured to request
// client certificates.
if (!!(ssl->config->verify_mode & SSL_VERIFY_PEER) &&
ssl->max_cert_list > kDefaultLimit) {
return ssl->max_cert_list;
}
} else {
// Clients may receive both Certificate message and a CertificateRequest
// message.
if (2 * ssl->max_cert_list > kDefaultLimit) {
return 2 * ssl->max_cert_list;
}
}
return kDefaultLimit;
case ssl_encryption_application:
// Note there is not actually a bound on the number of NewSessionTickets
// one may send in a row. This level may need more involved flow
// control. See https://github.com/quicwg/base-drafts/issues/1834.
return kDefaultLimit;
}
return 0;
}
enum ssl_encryption_level_t SSL_quic_read_level(const SSL *ssl) {
assert(SSL_is_quic(ssl));
return ssl->s3->quic_read_level;
}
enum ssl_encryption_level_t SSL_quic_write_level(const SSL *ssl) {
assert(SSL_is_quic(ssl));
return ssl->s3->quic_write_level;
}
int SSL_provide_quic_data(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) {
if (!SSL_is_quic(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (level != ssl->s3->quic_read_level) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_ENCRYPTION_LEVEL_RECEIVED);
return 0;
}
size_t new_len = (ssl->s3->hs_buf ? ssl->s3->hs_buf->length : 0) + len;
if (new_len < len ||
new_len > SSL_quic_max_handshake_flight_len(ssl, level)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
return 0;
}
return tls_append_handshake_data(ssl, MakeConstSpan(data, len));
}
int SSL_do_handshake(SSL *ssl) {
ssl_reset_error_state(ssl);
if (ssl->do_handshake == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
return -1;
}
if (!SSL_in_init(ssl)) {
return 1;
}
// Run the handshake.
SSL_HANDSHAKE *hs = ssl->s3->hs.get();
bool early_return = false;
int ret = ssl_run_handshake(hs, &early_return);
ssl_do_info_callback(
ssl, ssl->server ? SSL_CB_ACCEPT_EXIT : SSL_CB_CONNECT_EXIT, ret);
if (ret <= 0) {
return ret;
}
// Destroy the handshake object if the handshake has completely finished.
if (!early_return) {
ssl->s3->hs.reset();
ssl_maybe_shed_handshake_config(ssl);
}
return 1;
}
int SSL_connect(SSL *ssl) {
if (ssl->do_handshake == NULL) {
// Not properly initialized yet
SSL_set_connect_state(ssl);
}
return SSL_do_handshake(ssl);
}
int SSL_accept(SSL *ssl) {
if (ssl->do_handshake == NULL) {
// Not properly initialized yet
SSL_set_accept_state(ssl);
}
return SSL_do_handshake(ssl);
}
static int ssl_do_post_handshake(SSL *ssl, const SSLMessage &msg) {
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return tls13_post_handshake(ssl, msg);
}
// Check for renegotiation on the server before parsing to use the correct
// error. Renegotiation is triggered by a different message for servers.
if (ssl->server) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION);
return 0;
}
if (msg.type != SSL3_MT_HELLO_REQUEST || CBS_len(&msg.body) != 0) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST);
return 0;
}
if (ssl->renegotiate_mode == ssl_renegotiate_ignore) {
return 1; // Ignore the HelloRequest.
}
ssl->s3->renegotiate_pending = true;
if (ssl->renegotiate_mode == ssl_renegotiate_explicit) {
return 1; // Handle it later.
}
if (!SSL_renegotiate(ssl)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION);
return 0;
}
return 1;
}
int SSL_process_quic_post_handshake(SSL *ssl) {
ssl_reset_error_state(ssl);
if (!SSL_is_quic(ssl) || SSL_in_init(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
// Replay post-handshake message errors.
if (!check_read_error(ssl)) {
return 0;
}
// Process any buffered post-handshake messages.
SSLMessage msg;
while (ssl->method->get_message(ssl, &msg)) {
// Handle the post-handshake message and try again.
if (!ssl_do_post_handshake(ssl, msg)) {
ssl_set_read_error(ssl);
return 0;
}
ssl->method->next_message(ssl);
}
return 1;
}
static int ssl_read_impl(SSL *ssl) {
ssl_reset_error_state(ssl);
if (ssl->do_handshake == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
// Replay post-handshake message errors.
if (!check_read_error(ssl)) {
return -1;
}
while (ssl->s3->pending_app_data.empty()) {
if (ssl->s3->renegotiate_pending) {
ssl->s3->rwstate = SSL_ERROR_WANT_RENEGOTIATE;
return -1;
}
// If a read triggered a DTLS ACK or retransmit, resolve that before reading
// more.
if (SSL_is_dtls(ssl)) {
int ret = ssl->method->flush(ssl);
if (ret <= 0) {
return ret;
}
}
// Complete the current handshake, if any. False Start will cause
// |SSL_do_handshake| to return mid-handshake, so this may require multiple
// iterations.
while (!ssl_can_read(ssl)) {
int ret = SSL_do_handshake(ssl);
if (ret < 0) {
return ret;
}
if (ret == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
return -1;
}
}
// Process any buffered post-handshake messages.
SSLMessage msg;
if (ssl->method->get_message(ssl, &msg)) {
// If we received an interrupt in early read (EndOfEarlyData), loop again
// for the handshake to process it.
if (SSL_in_init(ssl)) {
ssl->s3->hs->can_early_read = false;
continue;
}
// Handle the post-handshake message and try again.
if (!ssl_do_post_handshake(ssl, msg)) {
ssl_set_read_error(ssl);
return -1;
}
ssl->method->next_message(ssl);
continue; // Loop again. We may have begun a new handshake.
}
uint8_t alert = SSL_AD_DECODE_ERROR;
size_t consumed = 0;
auto ret = ssl_open_app_data(ssl, &ssl->s3->pending_app_data, &consumed,
&alert, ssl->s3->read_buffer.span());
bool retry;
int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert);
if (bio_ret <= 0) {
return bio_ret;
}
if (!retry) {
assert(!ssl->s3->pending_app_data.empty());
ssl->s3->key_update_count = 0;
}
}
return 1;
}
int SSL_read(SSL *ssl, void *buf, int num) {
int ret = SSL_peek(ssl, buf, num);
if (ret <= 0) {
return ret;
}
// TODO(davidben): In DTLS, should the rest of the record be discarded? DTLS
// is not a stream. See https://crbug.com/boringssl/65.
ssl->s3->pending_app_data =
ssl->s3->pending_app_data.subspan(static_cast<size_t>(ret));
if (ssl->s3->pending_app_data.empty()) {
ssl->s3->read_buffer.DiscardConsumed();
}
return ret;
}
int SSL_peek(SSL *ssl, void *buf, int num) {
if (SSL_is_quic(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return -1;
}
int ret = ssl_read_impl(ssl);
if (ret <= 0) {
return ret;
}
if (num <= 0) {
return num;
}
size_t todo =
std::min(ssl->s3->pending_app_data.size(), static_cast<size_t>(num));
OPENSSL_memcpy(buf, ssl->s3->pending_app_data.data(), todo);
return static_cast<int>(todo);
}
int SSL_write(SSL *ssl, const void *buf, int num) {
ssl_reset_error_state(ssl);
if (SSL_is_quic(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return -1;
}
if (ssl->do_handshake == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
int ret = 0;
size_t bytes_written = 0;
bool needs_handshake = false;
do {
// If necessary, complete the handshake implicitly.
if (!ssl_can_write(ssl)) {
ret = SSL_do_handshake(ssl);
if (ret < 0) {
return ret;
}
if (ret == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
return -1;
}
}
if (num < 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH);
return -1;
}
ret = ssl->method->write_app_data(
ssl, &needs_handshake, &bytes_written,
MakeConstSpan(static_cast<const uint8_t *>(buf),
static_cast<size_t>(num)));
} while (needs_handshake);
return ret <= 0 ? ret : static_cast<int>(bytes_written);
}
int SSL_key_update(SSL *ssl, int request_type) {
ssl_reset_error_state(ssl);
if (ssl->do_handshake == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return 0;
}
if (SSL_is_quic(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (!ssl->s3->initial_handshake_complete) {
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE);
return 0;
}
if (ssl_protocol_version(ssl) < TLS1_3_VERSION) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
return 0;
}
return tls13_add_key_update(ssl, request_type);
}
int SSL_shutdown(SSL *ssl) {
ssl_reset_error_state(ssl);
if (ssl->do_handshake == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
return -1;
}
// If we are in the middle of a handshake, silently succeed. Consumers often
// call this function before |SSL_free|, whether the handshake succeeded or
// not. We assume the caller has already handled failed handshakes.
if (SSL_in_init(ssl)) {
return 1;
}
if (ssl->quiet_shutdown) {
// Do nothing if configured not to send a close_notify.
ssl->s3->write_shutdown = ssl_shutdown_close_notify;
ssl->s3->read_shutdown = ssl_shutdown_close_notify;
return 1;
}
// This function completes in two stages. It sends a close_notify and then it
// waits for a close_notify to come in. Perform exactly one action and return
// whether or not it succeeds.
if (ssl->s3->write_shutdown != ssl_shutdown_close_notify) {
// Send a close_notify.
if (ssl_send_alert_impl(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) {
return -1;
}
} else if (ssl->s3->alert_dispatch) {
// Finish sending the close_notify.
if (ssl->method->dispatch_alert(ssl) <= 0) {
return -1;
}
} else if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) {
if (SSL_is_dtls(ssl)) {
// Bidirectional shutdown doesn't make sense for an unordered
// transport. DTLS alerts also aren't delivered reliably, so we may even
// time out because the peer never received our close_notify. Report to
// the caller that the channel has fully shut down.
if (ssl->s3->read_shutdown == ssl_shutdown_error) {
ERR_restore_state(ssl->s3->read_error.get());
return -1;
}
ssl->s3->read_shutdown = ssl_shutdown_close_notify;
} else {
// Process records until an error, close_notify, or application data.
if (ssl_read_impl(ssl) > 0) {
// We received some unexpected application data.
OPENSSL_PUT_ERROR(SSL, SSL_R_APPLICATION_DATA_ON_SHUTDOWN);
return -1;
}
if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) {
return -1;
}
}
}
// Return 0 for unidirectional shutdown and 1 for bidirectional shutdown.
return ssl->s3->read_shutdown == ssl_shutdown_close_notify;
}
int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) {
if (ssl->s3->alert_dispatch) {
if (ssl->s3->send_alert[0] != SSL3_AL_FATAL ||
ssl->s3->send_alert[1] != alert) {
// We are already attempting to write a different alert.
OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
return -1;
}
return ssl->method->dispatch_alert(ssl);
}
return ssl_send_alert_impl(ssl, SSL3_AL_FATAL, alert);
}
int SSL_set_quic_transport_params(SSL *ssl, const uint8_t *params,
size_t params_len) {
return ssl->config && ssl->config->quic_transport_params.CopyFrom(
MakeConstSpan(params, params_len));
}
void SSL_get_peer_quic_transport_params(const SSL *ssl,
const uint8_t **out_params,
size_t *out_params_len) {
*out_params = ssl->s3->peer_quic_transport_params.data();
*out_params_len = ssl->s3->peer_quic_transport_params.size();
}
int SSL_set_quic_early_data_context(SSL *ssl, const uint8_t *context,
size_t context_len) {
return ssl->config && ssl->config->quic_early_data_context.CopyFrom(
MakeConstSpan(context, context_len));
}
void SSL_CTX_set_early_data_enabled(SSL_CTX *ctx, int enabled) {
ctx->enable_early_data = !!enabled;
}
void SSL_set_early_data_enabled(SSL *ssl, int enabled) {
ssl->enable_early_data = !!enabled;
}
int SSL_in_early_data(const SSL *ssl) {
if (ssl->s3->hs == NULL) {
return 0;
}
return ssl->s3->hs->in_early_data;
}
int SSL_early_data_accepted(const SSL *ssl) {
return ssl->s3->early_data_accepted;
}
void SSL_reset_early_data_reject(SSL *ssl) {
SSL_HANDSHAKE *hs = ssl->s3->hs.get();
if (hs == NULL || //
hs->wait != ssl_hs_early_data_rejected) {
abort();
}
hs->wait = ssl_hs_ok;
hs->in_early_data = false;
hs->early_session.reset();
// Discard any unfinished writes from the perspective of |SSL_write|'s
// retry. The handshake will transparently flush out the pending record
// (discarded by the server) to keep the framing correct.
ssl->s3->pending_write = {};
}
enum ssl_early_data_reason_t SSL_get_early_data_reason(const SSL *ssl) {
return ssl->s3->early_data_reason;
}
const char *SSL_early_data_reason_string(enum ssl_early_data_reason_t reason) {
switch (reason) {
case ssl_early_data_unknown:
return "unknown";
case ssl_early_data_disabled:
return "disabled";
case ssl_early_data_accepted:
return "accepted";
case ssl_early_data_protocol_version:
return "protocol_version";
case ssl_early_data_peer_declined:
return "peer_declined";
case ssl_early_data_no_session_offered:
return "no_session_offered";
case ssl_early_data_session_not_resumed:
return "session_not_resumed";
case ssl_early_data_unsupported_for_session:
return "unsupported_for_session";
case ssl_early_data_hello_retry_request:
return "hello_retry_request";
case ssl_early_data_alpn_mismatch:
return "alpn_mismatch";
case ssl_early_data_channel_id:
return "channel_id";
case ssl_early_data_ticket_age_skew:
return "ticket_age_skew";
case ssl_early_data_quic_parameter_mismatch:
return "quic_parameter_mismatch";
case ssl_early_data_alps_mismatch:
return "alps_mismatch";
}
return nullptr;
}
static int bio_retry_reason_to_error(int reason) {
switch (reason) {
case BIO_RR_CONNECT:
return SSL_ERROR_WANT_CONNECT;
case BIO_RR_ACCEPT:
return SSL_ERROR_WANT_ACCEPT;
default:
return SSL_ERROR_SYSCALL;
}
}
int SSL_get_error(const SSL *ssl, int ret_code) {
if (ret_code > 0) {
return SSL_ERROR_NONE;
}
// Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
// where we do encode the error
uint32_t err = ERR_peek_error();
if (err != 0) {
if (ERR_GET_LIB(err) == ERR_LIB_SYS) {
return SSL_ERROR_SYSCALL;
}
return SSL_ERROR_SSL;
}
if (ret_code == 0) {
if (ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN) {
return SSL_ERROR_ZERO_RETURN;
}
// An EOF was observed which violates the protocol, and the underlying
// transport does not participate in the error queue. Bubble up to the
// caller.
return SSL_ERROR_SYSCALL;
}
switch (ssl->s3->rwstate) {
case SSL_ERROR_PENDING_SESSION:
case SSL_ERROR_PENDING_CERTIFICATE:
case SSL_ERROR_HANDOFF:
case SSL_ERROR_HANDBACK:
case SSL_ERROR_WANT_X509_LOOKUP:
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
case SSL_ERROR_PENDING_TICKET:
case SSL_ERROR_EARLY_DATA_REJECTED:
case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
case SSL_ERROR_WANT_RENEGOTIATE:
case SSL_ERROR_HANDSHAKE_HINTS_READY:
return ssl->s3->rwstate;
case SSL_ERROR_WANT_READ: {
if (SSL_is_quic(ssl)) {
return SSL_ERROR_WANT_READ;
}
BIO *bio = SSL_get_rbio(ssl);
if (BIO_should_read(bio)) {
return SSL_ERROR_WANT_READ;
}
if (BIO_should_write(bio)) {
// TODO(davidben): OpenSSL historically checked for writes on the read
// BIO. Can this be removed?
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_io_special(bio)) {
return bio_retry_reason_to_error(BIO_get_retry_reason(bio));
}
break;
}
case SSL_ERROR_WANT_WRITE: {
BIO *bio = SSL_get_wbio(ssl);
if (BIO_should_write(bio)) {
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_read(bio)) {
// TODO(davidben): OpenSSL historically checked for reads on the write
// BIO. Can this be removed?
return SSL_ERROR_WANT_READ;
}
if (BIO_should_io_special(bio)) {
return bio_retry_reason_to_error(BIO_get_retry_reason(bio));
}
break;
}
}
return SSL_ERROR_SYSCALL;
}
const char *SSL_error_description(int err) {
switch (err) {
case SSL_ERROR_NONE:
return "NONE";
case SSL_ERROR_SSL:
return "SSL";
case SSL_ERROR_WANT_READ:
return "WANT_READ";
case SSL_ERROR_WANT_WRITE:
return "WANT_WRITE";
case SSL_ERROR_WANT_X509_LOOKUP:
return "WANT_X509_LOOKUP";
case SSL_ERROR_SYSCALL:
return "SYSCALL";
case SSL_ERROR_ZERO_RETURN:
return "ZERO_RETURN";
case SSL_ERROR_WANT_CONNECT:
return "WANT_CONNECT";
case SSL_ERROR_WANT_ACCEPT:
return "WANT_ACCEPT";
case SSL_ERROR_PENDING_SESSION:
return "PENDING_SESSION";
case SSL_ERROR_PENDING_CERTIFICATE:
return "PENDING_CERTIFICATE";
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
return "WANT_PRIVATE_KEY_OPERATION";
case SSL_ERROR_PENDING_TICKET:
return "PENDING_TICKET";
case SSL_ERROR_EARLY_DATA_REJECTED:
return "EARLY_DATA_REJECTED";
case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
return "WANT_CERTIFICATE_VERIFY";
case SSL_ERROR_HANDOFF:
return "HANDOFF";
case SSL_ERROR_HANDBACK:
return "HANDBACK";
case SSL_ERROR_WANT_RENEGOTIATE:
return "WANT_RENEGOTIATE";
case SSL_ERROR_HANDSHAKE_HINTS_READY:
return "HANDSHAKE_HINTS_READY";
default:
return nullptr;
}
}
uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) {
ctx->options |= options;
return ctx->options;
}
uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) {
ctx->options &= ~options;
return ctx->options;
}
uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; }
uint32_t SSL_set_options(SSL *ssl, uint32_t options) {
ssl->options |= options;
return ssl->options;
}
uint32_t SSL_clear_options(SSL *ssl, uint32_t options) {
ssl->options &= ~options;
return ssl->options;
}
uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; }
uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode |= mode;
return ctx->mode;
}
uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode &= ~mode;
return ctx->mode;
}
uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; }
uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) {
ssl->mode |= mode;
return ssl->mode;
}
uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) {
ssl->mode &= ~mode;
return ssl->mode;
}
uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; }
void SSL_CTX_set0_buffer_pool(SSL_CTX *ctx, CRYPTO_BUFFER_POOL *pool) {
ctx->pool = pool;
}
int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out) {
*out_len = 0;
OPENSSL_memset(out, 0, max_out);
// tls-unique is not defined for TLS 1.3.
if (!ssl->s3->initial_handshake_complete ||
ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
// The tls-unique value is the first Finished message in the handshake, which
// is the client's in a full handshake and the server's for a resumption. See
// https://tools.ietf.org/html/rfc5929#section-3.1.
Span<const uint8_t> finished = ssl->s3->previous_client_finished;
if (ssl->session != NULL) {
// tls-unique is broken for resumed sessions unless EMS is used.
if (!ssl->session->extended_master_secret) {
return 0;
}
finished = ssl->s3->previous_server_finished;
}
*out_len = finished.size();
if (finished.size() > max_out) {
*out_len = max_out;
}
OPENSSL_memcpy(out, finished.data(), *out_len);
return 1;
}
static int set_session_id_context(CERT *cert, const uint8_t *sid_ctx,
size_t sid_ctx_len) {
if (!cert->sid_ctx.TryCopyFrom(MakeConstSpan(sid_ctx, sid_ctx_len))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
return 1;
}
int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx,
size_t sid_ctx_len) {
return set_session_id_context(ctx->cert.get(), sid_ctx, sid_ctx_len);
}
int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx,
size_t sid_ctx_len) {
if (!ssl->config) {
return 0;
}
return set_session_id_context(ssl->config->cert.get(), sid_ctx, sid_ctx_len);
}
const uint8_t *SSL_get0_session_id_context(const SSL *ssl, size_t *out_len) {
if (!ssl->config) {
assert(ssl->config);
*out_len = 0;
return NULL;
}
*out_len = ssl->config->cert->sid_ctx.size();
return ssl->config->cert->sid_ctx.data();
}
int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); }
int SSL_get_rfd(const SSL *ssl) {
int ret = -1;
BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR);
if (b != NULL) {
BIO_get_fd(b, &ret);
}
return ret;
}
int SSL_get_wfd(const SSL *ssl) {
int ret = -1;
BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR);
if (b != NULL) {
BIO_get_fd(b, &ret);
}
return ret;
}
#if !defined(OPENSSL_NO_SOCK)
int SSL_set_fd(SSL *ssl, int fd) {
BIO *bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
return 0;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(ssl, bio, bio);
return 1;
}
int SSL_set_wfd(SSL *ssl, int fd) {
BIO *rbio = SSL_get_rbio(ssl);
if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET ||
BIO_get_fd(rbio, NULL) != fd) {
BIO *bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
return 0;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set0_wbio(ssl, bio);
} else {
// Copy the rbio over to the wbio.
BIO_up_ref(rbio);
SSL_set0_wbio(ssl, rbio);
}
return 1;
}
int SSL_set_rfd(SSL *ssl, int fd) {
BIO *wbio = SSL_get_wbio(ssl);
if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET ||
BIO_get_fd(wbio, NULL) != fd) {
BIO *bio = BIO_new(BIO_s_socket());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
return 0;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set0_rbio(ssl, bio);
} else {
// Copy the wbio over to the rbio.
BIO_up_ref(wbio);
SSL_set0_rbio(ssl, wbio);
}
return 1;
}
#endif // !OPENSSL_NO_SOCK
static size_t copy_finished(void *out, size_t out_len, Span<const uint8_t> in) {
if (out_len > in.size()) {
out_len = in.size();
}
OPENSSL_memcpy(out, in.data(), out_len);
return in.size();
}
size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) {
if (!ssl->s3->initial_handshake_complete ||
ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
if (ssl->server) {
return copy_finished(buf, count, ssl->s3->previous_server_finished);
}
return copy_finished(buf, count, ssl->s3->previous_client_finished);
}
size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) {
if (!ssl->s3->initial_handshake_complete ||
ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
if (ssl->server) {
return copy_finished(buf, count, ssl->s3->previous_client_finished);
}
return copy_finished(buf, count, ssl->s3->previous_server_finished);
}
int SSL_get_verify_mode(const SSL *ssl) {
if (!ssl->config) {
assert(ssl->config);
return -1;
}
return ssl->config->verify_mode;
}
int SSL_get_extms_support(const SSL *ssl) {
// TLS 1.3 does not require extended master secret and always reports as
// supporting it.
if (ssl->s3->version == 0) {
return 0;
}
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
return 1;
}
// If the initial handshake completed, query the established session.
if (ssl->s3->established_session != NULL) {
return ssl->s3->established_session->extended_master_secret;
}
// Otherwise, query the in-progress handshake.
if (ssl->s3->hs != NULL) {
return ssl->s3->hs->extended_master_secret;
}
assert(0);
return 0;
}
int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; }
int SSL_get_read_ahead(const SSL *ssl) { return 0; }
int SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { return 1; }
int SSL_set_read_ahead(SSL *ssl, int yes) { return 1; }
int SSL_pending(const SSL *ssl) {
return static_cast<int>(ssl->s3->pending_app_data.size());
}
int SSL_has_pending(const SSL *ssl) {
return SSL_pending(ssl) != 0 || !ssl->s3->read_buffer.empty();
}
static bool has_cert_and_key(const SSL_CREDENTIAL *cred) {
// TODO(davidben): If |cred->key_method| is set, that should be fine too.
if (cred->privkey == nullptr) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return false;
}
if (cred->chain == nullptr ||
sk_CRYPTO_BUFFER_value(cred->chain.get(), 0) == nullptr) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
return false;
}
return true;
}
int SSL_CTX_check_private_key(const SSL_CTX *ctx) {
// There is no need to actually check consistency because inconsistent values
// can never be configured.
return has_cert_and_key(ctx->cert->legacy_credential.get());
}
int SSL_check_private_key(const SSL *ssl) {
if (!ssl->config) {
return 0;
}
// There is no need to actually check consistency because inconsistent values
// can never be configured.
return has_cert_and_key(ssl->config->cert->legacy_credential.get());
}
long SSL_get_default_timeout(const SSL *ssl) {
return SSL_DEFAULT_SESSION_TIMEOUT;
}
int SSL_renegotiate(SSL *ssl) {
// Caller-initiated renegotiation is not supported.
if (!ssl->s3->renegotiate_pending) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (!ssl_can_renegotiate(ssl)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
return 0;
}
// We should not have told the caller to release the private key.
assert(!SSL_can_release_private_key(ssl));
// Renegotiation is only supported at quiescent points in the application
// protocol, namely in HTTPS, just before reading the HTTP response.
// Require the record-layer be idle and avoid complexities of sending a
// handshake record while an application_data record is being written.
if (!ssl->s3->write_buffer.empty() ||
ssl->s3->write_shutdown != ssl_shutdown_none) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
return 0;
}
// Begin a new handshake.
if (ssl->s3->hs != nullptr) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
ssl->s3->hs = ssl_handshake_new(ssl);
if (ssl->s3->hs == nullptr) {
return 0;
}
ssl->s3->renegotiate_pending = false;
ssl->s3->total_renegotiations++;
return 1;
}
int SSL_renegotiate_pending(SSL *ssl) {
return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete;
}
int SSL_total_renegotiations(const SSL *ssl) {
return ssl->s3->total_renegotiations;
}
size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) {
return ctx->max_cert_list;
}
void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ctx->max_cert_list = (uint32_t)max_cert_list;
}
size_t SSL_get_max_cert_list(const SSL *ssl) { return ssl->max_cert_list; }
void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ssl->max_cert_list = (uint32_t)max_cert_list;
}
int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ctx->max_send_fragment = (uint16_t)max_send_fragment;
return 1;
}
int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ssl->max_send_fragment = (uint16_t)max_send_fragment;
return 1;
}
int SSL_set_mtu(SSL *ssl, unsigned mtu) {
if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) {
return 0;
}
ssl->d1->mtu = mtu;
return 1;
}
int SSL_get_secure_renegotiation_support(const SSL *ssl) {
if (ssl->s3->version == 0) {
return 0;
}
return ssl_protocol_version(ssl) >= TLS1_3_VERSION ||
ssl->s3->send_connection_binding;
}
size_t SSL_CTX_sess_number(const SSL_CTX *ctx) {
MutexReadLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock));
return lh_SSL_SESSION_num_items(ctx->sessions);
}
unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) {
unsigned long ret = ctx->session_cache_size;
ctx->session_cache_size = size;
return ret;
}
unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) {
return ctx->session_cache_size;
}
int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) {
int ret = ctx->session_cache_mode;
ctx->session_cache_mode = mode;
return ret;
}
int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) {
return ctx->session_cache_mode;
}
int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) {
if (out == NULL) {
return 48;
}
if (len != 48) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH);
return 0;
}
// The default ticket keys are initialized lazily. Trigger a key
// rotation to initialize them.
if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) {
return 0;
}
uint8_t *out_bytes = reinterpret_cast<uint8_t *>(out);
MutexReadLock lock(&ctx->lock);
OPENSSL_memcpy(out_bytes, ctx->ticket_key_current->name, 16);
OPENSSL_memcpy(out_bytes + 16, ctx->ticket_key_current->hmac_key, 16);
OPENSSL_memcpy(out_bytes + 32, ctx->ticket_key_current->aes_key, 16);
return 1;
}
int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) {
if (in == NULL) {
return 48;
}
if (len != 48) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH);
return 0;
}
auto key = MakeUnique<TicketKey>();
if (!key) {
return 0;
}
const uint8_t *in_bytes = reinterpret_cast<const uint8_t *>(in);
OPENSSL_memcpy(key->name, in_bytes, 16);
OPENSSL_memcpy(key->hmac_key, in_bytes + 16, 16);
OPENSSL_memcpy(key->aes_key, in_bytes + 32, 16);
// Disable automatic key rotation for manually-configured keys. This is now
// the caller's responsibility.
key->next_rotation_tv_sec = 0;
ctx->ticket_key_current = std::move(key);
ctx->ticket_key_prev.reset();
return 1;
}
int SSL_CTX_set_tlsext_ticket_key_cb(
SSL_CTX *ctx,
int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt)) {
ctx->ticket_key_cb = callback;
return 1;
}
static bool check_group_ids(Span<const uint16_t> group_ids) {
for (uint16_t group_id : group_ids) {
if (ssl_group_id_to_nid(group_id) == NID_undef) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE);
return false;
}
}
return true;
}
int SSL_CTX_set1_group_ids(SSL_CTX *ctx, const uint16_t *group_ids,
size_t num_group_ids) {
auto span = MakeConstSpan(group_ids, num_group_ids);
return check_group_ids(span) && ctx->supported_group_list.CopyFrom(span);
}
int SSL_set1_group_ids(SSL *ssl, const uint16_t *group_ids,
size_t num_group_ids) {
if (!ssl->config) {
return 0;
}
auto span = MakeConstSpan(group_ids, num_group_ids);
return check_group_ids(span) &&
ssl->config->supported_group_list.CopyFrom(span);
}
static bool ssl_nids_to_group_ids(Array<uint16_t> *out_group_ids,
Span<const int> nids) {
Array<uint16_t> group_ids;
if (!group_ids.InitForOverwrite(nids.size())) {
return false;
}
for (size_t i = 0; i < nids.size(); i++) {
if (!ssl_nid_to_group_id(&group_ids[i], nids[i])) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE);
return false;
}
}
*out_group_ids = std::move(group_ids);
return true;
}
int SSL_CTX_set1_groups(SSL_CTX *ctx, const int *groups, size_t num_groups) {
return ssl_nids_to_group_ids(&ctx->supported_group_list,
MakeConstSpan(groups, num_groups));
}
int SSL_set1_groups(SSL *ssl, const int *groups, size_t num_groups) {
if (!ssl->config) {
return 0;
}
return ssl_nids_to_group_ids(&ssl->config->supported_group_list,
MakeConstSpan(groups, num_groups));
}
static bool ssl_str_to_group_ids(Array<uint16_t> *out_group_ids,
const char *str) {
// Count the number of groups in the list.
size_t count = 0;
const char *ptr = str, *col;
do {
col = strchr(ptr, ':');
count++;
if (col) {
ptr = col + 1;
}
} while (col);
Array<uint16_t> group_ids;
if (!group_ids.InitForOverwrite(count)) {
return false;
}
size_t i = 0;
ptr = str;
do {
col = strchr(ptr, ':');
if (!ssl_name_to_group_id(&group_ids[i++], ptr,
col ? (size_t)(col - ptr) : strlen(ptr))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE);
return false;
}
if (col) {
ptr = col + 1;
}
} while (col);
assert(i == count);
*out_group_ids = std::move(group_ids);
return true;
}
int SSL_CTX_set1_groups_list(SSL_CTX *ctx, const char *groups) {
return ssl_str_to_group_ids(&ctx->supported_group_list, groups);
}
int SSL_set1_groups_list(SSL *ssl, const char *groups) {
if (!ssl->config) {
return 0;
}
return ssl_str_to_group_ids(&ssl->config->supported_group_list, groups);
}
uint16_t SSL_get_group_id(const SSL *ssl) {
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return 0;
}
return session->group_id;
}
int SSL_get_negotiated_group(const SSL *ssl) {
uint16_t group_id = SSL_get_group_id(ssl);
if (group_id == 0) {
return NID_undef;
}
return ssl_group_id_to_nid(group_id);
}
int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) { return 1; }
int SSL_set_tmp_dh(SSL *ssl, const DH *dh) { return 1; }
STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) {
return ctx->cipher_list->ciphers.get();
}
int SSL_CTX_cipher_in_group(const SSL_CTX *ctx, size_t i) {
if (i >= sk_SSL_CIPHER_num(ctx->cipher_list->ciphers.get())) {
return 0;
}
return ctx->cipher_list->in_group_flags[i];
}
STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) {
if (ssl == NULL) {
return NULL;
}
if (ssl->config == NULL) {
assert(ssl->config);
return NULL;
}
return ssl->config->cipher_list ? ssl->config->cipher_list->ciphers.get()
: ssl->ctx->cipher_list->ciphers.get();
}
const char *SSL_get_cipher_list(const SSL *ssl, int n) {
if (ssl == NULL) {
return NULL;
}
STACK_OF(SSL_CIPHER) *sk = SSL_get_ciphers(ssl);
if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) {
return NULL;
}
const SSL_CIPHER *c = sk_SSL_CIPHER_value(sk, n);
if (c == NULL) {
return NULL;
}
return c->name;
}
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) {
const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value
: EVP_has_aes_hardware();
return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str,
false /* not strict */);
}
int SSL_CTX_set_strict_cipher_list(SSL_CTX *ctx, const char *str) {
const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value
: EVP_has_aes_hardware();
return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str,
true /* strict */);
}
int SSL_set_cipher_list(SSL *ssl, const char *str) {
if (!ssl->config) {
return 0;
}
const bool has_aes_hw = ssl->config->aes_hw_override
? ssl->config->aes_hw_override_value
: EVP_has_aes_hardware();
return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str,
false /* not strict */);
}
int SSL_set_strict_cipher_list(SSL *ssl, const char *str) {
if (!ssl->config) {
return 0;
}
const bool has_aes_hw = ssl->config->aes_hw_override
? ssl->config->aes_hw_override_value
: EVP_has_aes_hardware();
return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str,
true /* strict */);
}
const char *SSL_get_servername(const SSL *ssl, const int type) {
if (type != TLSEXT_NAMETYPE_host_name) {
return NULL;
}
// Historically, |SSL_get_servername| was also the configuration getter
// corresponding to |SSL_set_tlsext_host_name|.
if (ssl->hostname != nullptr) {
return ssl->hostname.get();
}
return ssl->s3->hostname.get();
}
int SSL_get_servername_type(const SSL *ssl) {
if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) == NULL) {
return -1;
}
return TLSEXT_NAMETYPE_host_name;
}
void SSL_CTX_set_custom_verify(
SSL_CTX *ctx, int mode,
enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) {
ctx->verify_mode = mode;
ctx->custom_verify_callback = callback;
}
void SSL_set_custom_verify(
SSL *ssl, int mode,
enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) {
if (!ssl->config) {
return;
}
ssl->config->verify_mode = mode;
ssl->config->custom_verify_callback = callback;
}
void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) {
ctx->signed_cert_timestamps_enabled = true;
}
void SSL_enable_signed_cert_timestamps(SSL *ssl) {
if (!ssl->config) {
return;
}
ssl->config->signed_cert_timestamps_enabled = true;
}
void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) {
ctx->ocsp_stapling_enabled = true;
}
void SSL_enable_ocsp_stapling(SSL *ssl) {
if (!ssl->config) {
return;
}
ssl->config->ocsp_stapling_enabled = true;
}
void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = SSL_get_session(ssl);
if (ssl->server || !session || !session->signed_cert_timestamp_list) {
*out_len = 0;
*out = NULL;
return;
}
*out = CRYPTO_BUFFER_data(session->signed_cert_timestamp_list.get());
*out_len = CRYPTO_BUFFER_len(session->signed_cert_timestamp_list.get());
}
void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = SSL_get_session(ssl);
if (ssl->server || !session || !session->ocsp_response) {
*out_len = 0;
*out = NULL;
return;
}
*out = CRYPTO_BUFFER_data(session->ocsp_response.get());
*out_len = CRYPTO_BUFFER_len(session->ocsp_response.get());
}
int SSL_set_tlsext_host_name(SSL *ssl, const char *name) {
ssl->hostname.reset();
if (name == nullptr) {
return 1;
}
size_t len = strlen(name);
if (len == 0 || len > TLSEXT_MAXLEN_host_name) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME);
return 0;
}
ssl->hostname.reset(OPENSSL_strdup(name));
if (ssl->hostname == nullptr) {
return 0;
}
return 1;
}
int SSL_CTX_set_tlsext_servername_callback(
SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) {
ctx->servername_callback = callback;
return 1;
}
int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) {
ctx->servername_arg = arg;
return 1;
}
int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *peer,
unsigned peer_len, const uint8_t *supported,
unsigned supported_len) {
*out = nullptr;
*out_len = 0;
// Both |peer| and |supported| must be valid protocol lists, but |peer| may be
// empty in NPN.
auto peer_span = MakeConstSpan(peer, peer_len);
auto supported_span = MakeConstSpan(supported, supported_len);
if ((!peer_span.empty() && !ssl_is_valid_alpn_list(peer_span)) ||
!ssl_is_valid_alpn_list(supported_span)) {
return OPENSSL_NPN_NO_OVERLAP;
}
// For each protocol in peer preference order, see if we support it.
CBS cbs = peer_span, proto;
while (CBS_len(&cbs) != 0) {
if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) {
return OPENSSL_NPN_NO_OVERLAP;
}
if (ssl_alpn_list_contains_protocol(MakeConstSpan(supported, supported_len),
proto)) {
// This function is not const-correct for compatibility with existing
// callers.
*out = const_cast<uint8_t *>(CBS_data(&proto));
// A u8 length prefix will fit in |uint8_t|.
*out_len = static_cast<uint8_t>(CBS_len(&proto));
return OPENSSL_NPN_NEGOTIATED;
}
}
// There's no overlap between our protocols and the peer's list. In ALPN, the
// caller is expected to fail the connection with no_application_protocol. In
// NPN, the caller is expected to opportunistically select the first protocol.
// See draft-agl-tls-nextprotoneg-04, section 6.
cbs = supported_span;
if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) {
return OPENSSL_NPN_NO_OVERLAP;
}
// See above.
*out = const_cast<uint8_t *>(CBS_data(&proto));
*out_len = static_cast<uint8_t>(CBS_len(&proto));
return OPENSSL_NPN_NO_OVERLAP;
}
void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data,
unsigned *out_len) {
// NPN protocols have one-byte lengths, so they must fit in |unsigned|.
assert(ssl->s3->next_proto_negotiated.size() <= UINT_MAX);
*out_data = ssl->s3->next_proto_negotiated.data();
*out_len = static_cast<unsigned>(ssl->s3->next_proto_negotiated.size());
}
void SSL_CTX_set_next_protos_advertised_cb(
SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg),
void *arg) {
ctx->next_protos_advertised_cb = cb;
ctx->next_protos_advertised_cb_arg = arg;
}
void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
int (*cb)(SSL *ssl, uint8_t **out,
uint8_t *out_len,
const uint8_t *in,
unsigned in_len, void *arg),
void *arg) {
ctx->next_proto_select_cb = cb;
ctx->next_proto_select_cb_arg = arg;
}
int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos,
size_t protos_len) {
// Note this function's return value is backwards.
auto span = MakeConstSpan(protos, protos_len);
if (!span.empty() && !ssl_is_valid_alpn_list(span)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST);
return 1;
}
return ctx->alpn_client_proto_list.CopyFrom(span) ? 0 : 1;
}
int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, size_t protos_len) {
// Note this function's return value is backwards.
if (!ssl->config) {
return 1;
}
auto span = MakeConstSpan(protos, protos_len);
if (!span.empty() && !ssl_is_valid_alpn_list(span)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST);
return 1;
}
return ssl->config->alpn_client_proto_list.CopyFrom(span) ? 0 : 1;
}
void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out,
uint8_t *out_len, const uint8_t *in,
unsigned in_len, void *arg),
void *arg) {
ctx->alpn_select_cb = cb;
ctx->alpn_select_cb_arg = arg;
}
void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data,
unsigned *out_len) {
Span<const uint8_t> protocol;
if (SSL_in_early_data(ssl) && !ssl->server) {
protocol = ssl->s3->hs->early_session->early_alpn;
} else {
protocol = ssl->s3->alpn_selected;
}
// ALPN protocols have one-byte lengths, so they must fit in |unsigned|.
assert(protocol.size() < UINT_MAX);
*out_data = protocol.data();
*out_len = static_cast<unsigned>(protocol.size());
}
void SSL_CTX_set_allow_unknown_alpn_protos(SSL_CTX *ctx, int enabled) {
ctx->allow_unknown_alpn_protos = !!enabled;
}
int SSL_add_application_settings(SSL *ssl, const uint8_t *proto,
size_t proto_len, const uint8_t *settings,
size_t settings_len) {
if (!ssl->config) {
return 0;
}
ALPSConfig config;
if (!config.protocol.CopyFrom(MakeConstSpan(proto, proto_len)) ||
!config.settings.CopyFrom(MakeConstSpan(settings, settings_len)) ||
!ssl->config->alps_configs.Push(std::move(config))) {
return 0;
}
return 1;
}
void SSL_get0_peer_application_settings(const SSL *ssl,
const uint8_t **out_data,
size_t *out_len) {
const SSL_SESSION *session = SSL_get_session(ssl);
Span<const uint8_t> settings =
session ? session->peer_application_settings : Span<const uint8_t>();
*out_data = settings.data();
*out_len = settings.size();
}
int SSL_has_application_settings(const SSL *ssl) {
const SSL_SESSION *session = SSL_get_session(ssl);
return session && session->has_application_settings;
}
void SSL_set_alps_use_new_codepoint(SSL *ssl, int use_new) {
if (!ssl->config) {
return;
}
ssl->config->alps_use_new_codepoint = !!use_new;
}
int SSL_CTX_add_cert_compression_alg(SSL_CTX *ctx, uint16_t alg_id,
ssl_cert_compression_func_t compress,
ssl_cert_decompression_func_t decompress) {
assert(compress != nullptr || decompress != nullptr);
for (const auto &alg : ctx->cert_compression_algs) {
if (alg.alg_id == alg_id) {
return 0;
}
}
CertCompressionAlg alg;
alg.alg_id = alg_id;
alg.compress = compress;
alg.decompress = decompress;
return ctx->cert_compression_algs.Push(alg);
}
void SSL_CTX_set_tls_channel_id_enabled(SSL_CTX *ctx, int enabled) {
ctx->channel_id_enabled = !!enabled;
}
int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) {
SSL_CTX_set_tls_channel_id_enabled(ctx, 1);
return 1;
}
void SSL_set_tls_channel_id_enabled(SSL *ssl, int enabled) {
if (!ssl->config) {
return;
}
ssl->config->channel_id_enabled = !!enabled;
}
int SSL_enable_tls_channel_id(SSL *ssl) {
SSL_set_tls_channel_id_enabled(ssl, 1);
return 1;
}
static int is_p256_key(EVP_PKEY *private_key) {
const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key);
return ec_key != NULL && EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) ==
NID_X9_62_prime256v1;
}
int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) {
if (!is_p256_key(private_key)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256);
return 0;
}
ctx->channel_id_private = UpRef(private_key);
return 1;
}
int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) {
if (!ssl->config) {
return 0;
}
if (!is_p256_key(private_key)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256);
return 0;
}
ssl->config->channel_id_private = UpRef(private_key);
return 1;
}
size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) {
if (!ssl->s3->channel_id_valid) {
return 0;
}
OPENSSL_memcpy(out, ssl->s3->channel_id, (max_out < 64) ? max_out : 64);
return 64;
}
size_t SSL_get0_certificate_types(const SSL *ssl, const uint8_t **out_types) {
Span<const uint8_t> types;
if (!ssl->server && ssl->s3->hs != nullptr) {
types = ssl->s3->hs->certificate_types;
}
*out_types = types.data();
return types.size();
}
size_t SSL_get0_peer_verify_algorithms(const SSL *ssl,
const uint16_t **out_sigalgs) {
Span<const uint16_t> sigalgs;
if (ssl->s3->hs != nullptr) {
sigalgs = ssl->s3->hs->peer_sigalgs;
}
*out_sigalgs = sigalgs.data();
return sigalgs.size();
}
size_t SSL_get0_peer_delegation_algorithms(const SSL *ssl,
const uint16_t **out_sigalgs) {
Span<const uint16_t> sigalgs;
if (ssl->s3->hs != nullptr) {
sigalgs = ssl->s3->hs->peer_delegated_credential_sigalgs;
}
*out_sigalgs = sigalgs.data();
return sigalgs.size();
}
EVP_PKEY *SSL_get_privatekey(const SSL *ssl) {
if (!ssl->config) {
assert(ssl->config);
return nullptr;
}
return ssl->config->cert->legacy_credential->privkey.get();
}
EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) {
return ctx->cert->legacy_credential->privkey.get();
}
const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) {
const SSL_SESSION *session = SSL_get_session(ssl);
return session == nullptr ? nullptr : session->cipher;
}
int SSL_session_reused(const SSL *ssl) {
return ssl->s3->session_reused || SSL_in_early_data(ssl);
}
const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; }
const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; }
int SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; }
void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) {
ctx->quiet_shutdown = (mode != 0);
}
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) {
return ctx->quiet_shutdown;
}
void SSL_set_quiet_shutdown(SSL *ssl, int mode) {
ssl->quiet_shutdown = (mode != 0);
}
int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; }
void SSL_set_shutdown(SSL *ssl, int mode) {
// It is an error to clear any bits that have already been set. (We can't try
// to get a second close_notify or send two.)
assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl));
if (mode & SSL_RECEIVED_SHUTDOWN &&
ssl->s3->read_shutdown == ssl_shutdown_none) {
ssl->s3->read_shutdown = ssl_shutdown_close_notify;
}
if (mode & SSL_SENT_SHUTDOWN &&
ssl->s3->write_shutdown == ssl_shutdown_none) {
ssl->s3->write_shutdown = ssl_shutdown_close_notify;
}
}
int SSL_get_shutdown(const SSL *ssl) {
int ret = 0;
if (ssl->s3->read_shutdown != ssl_shutdown_none) {
// Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify
// and fatal alert.
ret |= SSL_RECEIVED_SHUTDOWN;
}
if (ssl->s3->write_shutdown == ssl_shutdown_close_notify) {
// Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify.
ret |= SSL_SENT_SHUTDOWN;
}
return ret;
}
SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx.get(); }
SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) {
if (!ssl->config) {
return NULL;
}
if (ssl->ctx.get() == ctx) {
return ssl->ctx.get();
}
// One cannot change the X.509 callbacks during a connection.
if (ssl->ctx->x509_method != ctx->x509_method) {
assert(0);
return NULL;
}
UniquePtr<CERT> new_cert = ssl_cert_dup(ctx->cert.get());
if (!new_cert) {
return nullptr;
}
ssl->config->cert = std::move(new_cert);
ssl->ctx = UpRef(ctx);
ssl->enable_early_data = ssl->ctx->enable_early_data;
return ssl->ctx.get();
}
void SSL_set_info_callback(SSL *ssl,
void (*cb)(const SSL *ssl, int type, int value)) {
ssl->info_callback = cb;
}
void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type,
int value) {
return ssl->info_callback;
}
int SSL_state(const SSL *ssl) {
return SSL_in_init(ssl) ? SSL_ST_INIT : SSL_ST_OK;
}
void SSL_set_state(SSL *ssl, int state) {}
char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) {
if (len <= 0) {
return NULL;
}
buf[0] = '\0';
return buf;
}
int SSL_get_shared_sigalgs(SSL *ssl, int idx, int *psign, int *phash,
int *psignandhash, uint8_t *rsig, uint8_t *rhash) {
return 0;
}
int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method) {
if (ctx->method->is_dtls) {
return 0;
}
ctx->quic_method = quic_method;
return 1;
}
int SSL_set_quic_method(SSL *ssl, const SSL_QUIC_METHOD *quic_method) {
if (ssl->method->is_dtls) {
return 0;
}
ssl->quic_method = quic_method;
return 1;
}
int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl, argl, argp,
free_func);
}
int SSL_set_ex_data(SSL *ssl, int idx, void *data) {
return CRYPTO_set_ex_data(&ssl->ex_data, idx, data);
}
void *SSL_get_ex_data(const SSL *ssl, int idx) {
return CRYPTO_get_ex_data(&ssl->ex_data, idx);
}
int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
CRYPTO_EX_dup *dup_unused,
CRYPTO_EX_free *free_func) {
return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl_ctx, argl, argp,
free_func);
}
int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data) {
return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
}
void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) {
return CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
int SSL_want(const SSL *ssl) {
// Historically, OpenSSL did not track |SSL_ERROR_ZERO_RETURN| as an |rwstate|
// value. We do, but map it back to |SSL_ERROR_NONE| to preserve the original
// behavior.
return ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN ? SSL_ERROR_NONE
: ssl->s3->rwstate;
}
void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {}
void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {}
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*cb)(SSL *ssl, int is_export,
int keylength)) {}
void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*cb)(SSL *ssl, int is_export,
int keylength)) {}
static int use_psk_identity_hint(UniquePtr<char> *out,
const char *identity_hint) {
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
// Clear currently configured hint, if any.
out->reset();
// Treat the empty hint as not supplying one. Plain PSK makes it possible to
// send either no hint (omit ServerKeyExchange) or an empty hint, while
// ECDHE_PSK can only spell empty hint. Having different capabilities is odd,
// so we interpret empty and missing as identical.
if (identity_hint != NULL && identity_hint[0] != '\0') {
out->reset(OPENSSL_strdup(identity_hint));
if (*out == nullptr) {
return 0;
}
}
return 1;
}
int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) {
return use_psk_identity_hint(&ctx->psk_identity_hint, identity_hint);
}
int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) {
if (!ssl->config) {
return 0;
}
return use_psk_identity_hint(&ssl->config->psk_identity_hint, identity_hint);
}
const char *SSL_get_psk_identity_hint(const SSL *ssl) {
if (ssl == NULL) {
return NULL;
}
if (ssl->config == NULL) {
assert(ssl->config);
return NULL;
}
return ssl->config->psk_identity_hint.get();
}
const char *SSL_get_psk_identity(const SSL *ssl) {
if (ssl == NULL) {
return NULL;
}
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return NULL;
}
return session->psk_identity.get();
}
void SSL_set_psk_client_callback(
SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned max_identity_len, uint8_t *psk,
unsigned max_psk_len)) {
if (!ssl->config) {
return;
}
ssl->config->psk_client_callback = cb;
}
void SSL_CTX_set_psk_client_callback(
SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned max_identity_len, uint8_t *psk,
unsigned max_psk_len)) {
ctx->psk_client_callback = cb;
}
void SSL_set_psk_server_callback(SSL *ssl,
unsigned (*cb)(SSL *ssl, const char *identity,
uint8_t *psk,
unsigned max_psk_len)) {
if (!ssl->config) {
return;
}
ssl->config->psk_server_callback = cb;
}
void SSL_CTX_set_psk_server_callback(
SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk,
unsigned max_psk_len)) {
ctx->psk_server_callback = cb;
}
void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
void (*cb)(int write_p, int version,
int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)) {
ctx->msg_callback = cb;
}
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) {
ctx->msg_callback_arg = arg;
}
void SSL_set_msg_callback(SSL *ssl,
void (*cb)(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl,
void *arg)) {
ssl->msg_callback = cb;
}
void SSL_set_msg_callback_arg(SSL *ssl, void *arg) {
ssl->msg_callback_arg = arg;
}
void SSL_CTX_set_keylog_callback(SSL_CTX *ctx,
void (*cb)(const SSL *ssl, const char *line)) {
ctx->keylog_callback = cb;
}
void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))(const SSL *ssl,
const char *line) {
return ctx->keylog_callback;
}
void SSL_CTX_set_current_time_cb(SSL_CTX *ctx,
void (*cb)(const SSL *ssl,
struct timeval *out_clock)) {
ctx->current_time_cb = cb;
}
int SSL_can_release_private_key(const SSL *ssl) {
if (ssl_can_renegotiate(ssl)) {
// If the connection can renegotiate (client only), the private key may be
// used in a future handshake.
return 0;
}
// Otherwise, this is determined by the current handshake.
return !ssl->s3->hs || ssl->s3->hs->can_release_private_key;
}
int SSL_is_init_finished(const SSL *ssl) { return !SSL_in_init(ssl); }
int SSL_in_init(const SSL *ssl) {
// This returns false once all the handshake state has been finalized, to
// allow callbacks and getters based on SSL_in_init to return the correct
// values.
SSL_HANDSHAKE *hs = ssl->s3->hs.get();
return hs != nullptr && !hs->handshake_finalized;
}
int SSL_in_false_start(const SSL *ssl) {
if (ssl->s3->hs == NULL) {
return 0;
}
return ssl->s3->hs->in_false_start;
}
int SSL_cutthrough_complete(const SSL *ssl) { return SSL_in_false_start(ssl); }
int SSL_is_server(const SSL *ssl) { return ssl->server; }
int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; }
int SSL_is_quic(const SSL *ssl) { return ssl->quic_method != nullptr; }
void SSL_CTX_set_select_certificate_cb(
SSL_CTX *ctx,
enum ssl_select_cert_result_t (*cb)(const SSL_CLIENT_HELLO *)) {
ctx->select_certificate_cb = cb;
}
void SSL_CTX_set_dos_protection_cb(SSL_CTX *ctx,
int (*cb)(const SSL_CLIENT_HELLO *)) {
ctx->dos_protection_cb = cb;
}
void SSL_CTX_set_reverify_on_resume(SSL_CTX *ctx, int enabled) {
ctx->reverify_on_resume = !!enabled;
}
void SSL_set_enforce_rsa_key_usage(SSL *ssl, int enabled) {
if (!ssl->config) {
return;
}
ssl->config->enforce_rsa_key_usage = !!enabled;
}
int SSL_was_key_usage_invalid(const SSL *ssl) {
return ssl->s3->was_key_usage_invalid;
}
void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) {
ssl->renegotiate_mode = mode;
// Check if |ssl_can_renegotiate| has changed and the configuration may now be
// shed. HTTP clients may initially allow renegotiation for HTTP/1.1, and then
// disable after the handshake once the ALPN protocol is known to be HTTP/2.
ssl_maybe_shed_handshake_config(ssl);
}
int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv,
const uint8_t **out_write_iv, size_t *out_iv_len) {
// No cipher suites maintain stateful internal IVs in DTLS. It would not be
// compatible with reordering.
if (SSL_is_dtls(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
size_t write_iv_len;
if (!ssl->s3->aead_read_ctx->GetIV(out_read_iv, out_iv_len) ||
!ssl->s3->aead_write_ctx->GetIV(out_write_iv, &write_iv_len) ||
*out_iv_len != write_iv_len) {
return 0;
}
return 1;
}
uint64_t SSL_get_read_sequence(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
// TODO(crbug.com/42290608): This API needs to reworked.
//
// In DTLS 1.2, right at an epoch transition, |read_epoch| may not have
// received any records. We will then return that sequence 0 is the highest
// received, but it's really -1, which is not representable. This is mostly
// moot because, after the handshake, we will never be in the state.
//
// In DTLS 1.3, epochs do not transition until the first record comes in.
// This avoids the DTLS 1.2 problem but introduces a different problem:
// during a KeyUpdate (which may occur in the steady state), both epochs are
// live. We'll likely need a new API for DTLS offload.
const DTLSReadEpoch *read_epoch = &ssl->d1->read_epoch;
return DTLSRecordNumber(read_epoch->epoch, read_epoch->bitmap.max_seq_num())
.combined();
}
return ssl->s3->read_sequence;
}
uint64_t SSL_get_write_sequence(const SSL *ssl) {
if (SSL_is_dtls(ssl)) {
return ssl->d1->write_epoch.next_record.combined();
}
return ssl->s3->write_sequence;
}
uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) {
SSL_SESSION *session = SSL_get_session(ssl);
if (session == NULL) {
return 0;
}
return session->peer_signature_algorithm;
}
size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) {
if (max_out == 0) {
return sizeof(ssl->s3->client_random);
}
if (max_out > sizeof(ssl->s3->client_random)) {
max_out = sizeof(ssl->s3->client_random);
}
OPENSSL_memcpy(out, ssl->s3->client_random, max_out);
return max_out;
}
size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) {
if (max_out == 0) {
return sizeof(ssl->s3->server_random);
}
if (max_out > sizeof(ssl->s3->server_random)) {
max_out = sizeof(ssl->s3->server_random);
}
OPENSSL_memcpy(out, ssl->s3->server_random, max_out);
return max_out;
}
const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) {
SSL_HANDSHAKE *hs = ssl->s3->hs.get();
if (hs == NULL) {
return NULL;
}
return hs->new_cipher;
}
void SSL_set_retain_only_sha256_of_client_certs(SSL *ssl, int enabled) {
if (!ssl->config) {
return;
}
ssl->config->retain_only_sha256_of_client_certs = !!enabled;
}
void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) {
ctx->retain_only_sha256_of_client_certs = !!enabled;
}
void SSL_CTX_set_grease_enabled(SSL_CTX *ctx, int enabled) {
ctx->grease_enabled = !!enabled;
}
void SSL_CTX_set_permute_extensions(SSL_CTX *ctx, int enabled) {
ctx->permute_extensions = !!enabled;
}
void SSL_set_permute_extensions(SSL *ssl, int enabled) {
if (!ssl->config) {
return;
}
ssl->config->permute_extensions = !!enabled;
}
int32_t SSL_get_ticket_age_skew(const SSL *ssl) {
return ssl->s3->ticket_age_skew;
}
void SSL_CTX_set_false_start_allowed_without_alpn(SSL_CTX *ctx, int allowed) {
ctx->false_start_allowed_without_alpn = !!allowed;
}
int SSL_used_hello_retry_request(const SSL *ssl) {
return ssl->s3->used_hello_retry_request;
}
void SSL_set_shed_handshake_config(SSL *ssl, int enable) {
if (!ssl->config) {
return;
}
ssl->config->shed_handshake_config = !!enable;
}
void SSL_set_jdk11_workaround(SSL *ssl, int enable) {
if (!ssl->config) {
return;
}
ssl->config->jdk11_workaround = !!enable;
}
void SSL_set_check_client_certificate_type(SSL *ssl, int enable) {
if (!ssl->config) {
return;
}
ssl->config->check_client_certificate_type = !!enable;
}
void SSL_set_check_ecdsa_curve(SSL *ssl, int enable) {
if (!ssl->config) {
return;
}
ssl->config->check_ecdsa_curve = !!enable;
}
void SSL_set_quic_use_legacy_codepoint(SSL *ssl, int use_legacy) {
if (!ssl->config) {
return;
}
ssl->config->quic_use_legacy_codepoint = !!use_legacy;
}
int SSL_clear(SSL *ssl) {
if (!ssl->config) {
return 0; // SSL_clear may not be used after shedding config.
}
// In OpenSSL, reusing a client |SSL| with |SSL_clear| causes the previously
// established session to be offered the next time around. wpa_supplicant
// depends on this behavior, so emulate it.
UniquePtr<SSL_SESSION> session;
if (!ssl->server && ssl->s3->established_session != NULL) {
session = UpRef(ssl->s3->established_session);
}
// The ssl->d1->mtu is simultaneously configuration (preserved across
// clear) and connection-specific state (gets reset).
//
// TODO(davidben): Avoid this.
unsigned mtu = 0;
if (ssl->d1 != NULL) {
mtu = ssl->d1->mtu;
}
ssl->method->ssl_free(ssl);
if (!ssl->method->ssl_new(ssl)) {
return 0;
}
if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
ssl->d1->mtu = mtu;
}
if (session != nullptr) {
SSL_set_session(ssl, session.get());
}
return 1;
}
int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; }
int SSL_num_renegotiations(const SSL *ssl) {
return SSL_total_renegotiations(ssl);
}
int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; }
int SSL_need_tmp_RSA(const SSL *ssl) { return 0; }
int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; }
int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; }
void ERR_load_SSL_strings(void) {}
void SSL_load_error_strings(void) {}
int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); }
int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) {
if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
return SSL_CTX_set1_groups(ctx, &nid, 1);
}
int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) {
if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
return SSL_set1_groups(ssl, &nid, 1);
}
void SSL_CTX_set_ticket_aead_method(SSL_CTX *ctx,
const SSL_TICKET_AEAD_METHOD *aead_method) {
ctx->ticket_aead_method = aead_method;
}
SSL_SESSION *SSL_process_tls13_new_session_ticket(SSL *ssl, const uint8_t *buf,
size_t buf_len) {
if (SSL_in_init(ssl) || //
ssl_protocol_version(ssl) != TLS1_3_VERSION || //
ssl->server) {
// Only TLS 1.3 clients are supported.
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return nullptr;
}
CBS cbs, body;
CBS_init(&cbs, buf, buf_len);
uint8_t type;
if (!CBS_get_u8(&cbs, &type) || //
!CBS_get_u24_length_prefixed(&cbs, &body) || //
CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return nullptr;
}
UniquePtr<SSL_SESSION> session = tls13_create_session_with_ticket(ssl, &body);
if (!session) {
// |tls13_create_session_with_ticket| puts the correct error.
return nullptr;
}
return session.release();
}
int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) {
num_tickets = std::min(num_tickets, kMaxTickets);
static_assert(kMaxTickets <= 0xff, "Too many tickets.");
ctx->num_tickets = static_cast<uint8_t>(num_tickets);
return 1;
}
size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) { return ctx->num_tickets; }
int SSL_set_tlsext_status_type(SSL *ssl, int type) {
if (!ssl->config) {
return 0;
}
ssl->config->ocsp_stapling_enabled = type == TLSEXT_STATUSTYPE_ocsp;
return 1;
}
int SSL_get_tlsext_status_type(const SSL *ssl) {
if (ssl->server) {
SSL_HANDSHAKE *hs = ssl->s3->hs.get();
return hs != nullptr && hs->ocsp_stapling_requested
? TLSEXT_STATUSTYPE_ocsp
: TLSEXT_STATUSTYPE_nothing;
}
return ssl->config != nullptr && ssl->config->ocsp_stapling_enabled
? TLSEXT_STATUSTYPE_ocsp
: TLSEXT_STATUSTYPE_nothing;
}
int SSL_set_tlsext_status_ocsp_resp(SSL *ssl, uint8_t *resp, size_t resp_len) {
if (SSL_set_ocsp_response(ssl, resp, resp_len)) {
OPENSSL_free(resp);
return 1;
}
return 0;
}
size_t SSL_get_tlsext_status_ocsp_resp(const SSL *ssl, const uint8_t **out) {
size_t ret;
SSL_get0_ocsp_response(ssl, out, &ret);
return ret;
}
int SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx,
int (*callback)(SSL *ssl, void *arg)) {
ctx->legacy_ocsp_callback = callback;
return 1;
}
int SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg) {
ctx->legacy_ocsp_callback_arg = arg;
return 1;
}
uint16_t SSL_get_curve_id(const SSL *ssl) { return SSL_get_group_id(ssl); }
const char *SSL_get_curve_name(uint16_t curve_id) {
return SSL_get_group_name(curve_id);
}
size_t SSL_get_all_curve_names(const char **out, size_t max_out) {
return SSL_get_all_group_names(out, max_out);
}
int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t num_curves) {
return SSL_CTX_set1_groups(ctx, curves, num_curves);
}
int SSL_set1_curves(SSL *ssl, const int *curves, size_t num_curves) {
return SSL_set1_groups(ssl, curves, num_curves);
}
int SSL_CTX_set1_curves_list(SSL_CTX *ctx, const char *curves) {
return SSL_CTX_set1_groups_list(ctx, curves);
}
int SSL_set1_curves_list(SSL *ssl, const char *curves) {
return SSL_set1_groups_list(ssl, curves);
}
namespace fips202205 {
// (References are to SP 800-52r2):
// Section 3.4.2.2
// "at least one of the NIST-approved curves, P-256 (secp256r1) and P384
// (secp384r1), shall be supported as described in RFC 8422."
//
// Section 3.3.1
// "The server shall be configured to only use cipher suites that are
// composed entirely of NIST approved algorithms"
static const uint16_t kGroups[] = {SSL_GROUP_SECP256R1, SSL_GROUP_SECP384R1};
static const uint16_t kSigAlgs[] = {
SSL_SIGN_RSA_PKCS1_SHA256,
SSL_SIGN_RSA_PKCS1_SHA384,
SSL_SIGN_RSA_PKCS1_SHA512,
// Table 4.1:
// "The curve should be P-256 or P-384"
SSL_SIGN_ECDSA_SECP256R1_SHA256,
SSL_SIGN_ECDSA_SECP384R1_SHA384,
SSL_SIGN_RSA_PSS_RSAE_SHA256,
SSL_SIGN_RSA_PSS_RSAE_SHA384,
SSL_SIGN_RSA_PSS_RSAE_SHA512,
};
static const char kTLS12Ciphers[] =
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:"
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:"
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:"
"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384";
static int Configure(SSL_CTX *ctx) {
ctx->compliance_policy = ssl_compliance_policy_fips_202205;
return
// Section 3.1:
// "Servers that support government-only applications shall be
// configured to use TLS 1.2 and should be configured to use TLS 1.3
// as well. These servers should not be configured to use TLS 1.1 and
// shall not use TLS 1.0, SSL 3.0, or SSL 2.0.
SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) &&
SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) &&
// Sections 3.3.1.1.1 and 3.3.1.1.2 are ambiguous about whether
// HMAC-SHA-1 cipher suites are permitted with TLS 1.2. However, later the
// Encrypt-then-MAC extension is required for all CBC cipher suites and so
// it's easier to drop them.
SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) &&
SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) &&
SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs)) &&
SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs));
}
static int Configure(SSL *ssl) {
ssl->config->compliance_policy = ssl_compliance_policy_fips_202205;
// See |Configure(SSL_CTX)|, above, for reasoning.
return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) &&
SSL_set_max_proto_version(ssl, TLS1_3_VERSION) &&
SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) &&
SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) &&
SSL_set_signing_algorithm_prefs(ssl, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs)) &&
SSL_set_verify_algorithm_prefs(ssl, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs));
}
} // namespace fips202205
namespace wpa202304 {
// See WPA version 3.1, section 3.5.
static const uint16_t kGroups[] = {SSL_GROUP_SECP384R1};
static const uint16_t kSigAlgs[] = {
SSL_SIGN_RSA_PKCS1_SHA384, //
SSL_SIGN_RSA_PKCS1_SHA512, //
SSL_SIGN_ECDSA_SECP384R1_SHA384, //
SSL_SIGN_RSA_PSS_RSAE_SHA384, //
SSL_SIGN_RSA_PSS_RSAE_SHA512, //
};
static const char kTLS12Ciphers[] =
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:"
"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384";
static int Configure(SSL_CTX *ctx) {
ctx->compliance_policy = ssl_compliance_policy_wpa3_192_202304;
return SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) &&
SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) &&
SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) &&
SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) &&
SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs)) &&
SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs));
}
static int Configure(SSL *ssl) {
ssl->config->compliance_policy = ssl_compliance_policy_wpa3_192_202304;
return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) &&
SSL_set_max_proto_version(ssl, TLS1_3_VERSION) &&
SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) &&
SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) &&
SSL_set_signing_algorithm_prefs(ssl, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs)) &&
SSL_set_verify_algorithm_prefs(ssl, kSigAlgs,
OPENSSL_ARRAY_SIZE(kSigAlgs));
}
} // namespace wpa202304
namespace cnsa202407 {
static int Configure(SSL_CTX *ctx) {
ctx->compliance_policy = ssl_compliance_policy_cnsa_202407;
return 1;
}
static int Configure(SSL *ssl) {
ssl->config->compliance_policy = ssl_compliance_policy_cnsa_202407;
return 1;
}
} // namespace cnsa202407
int SSL_CTX_set_compliance_policy(SSL_CTX *ctx,
enum ssl_compliance_policy_t policy) {
switch (policy) {
case ssl_compliance_policy_fips_202205:
return fips202205::Configure(ctx);
case ssl_compliance_policy_wpa3_192_202304:
return wpa202304::Configure(ctx);
case ssl_compliance_policy_cnsa_202407:
return cnsa202407::Configure(ctx);
default:
return 0;
}
}
enum ssl_compliance_policy_t SSL_CTX_get_compliance_policy(const SSL_CTX *ctx) {
return ctx->compliance_policy;
}
int SSL_set_compliance_policy(SSL *ssl, enum ssl_compliance_policy_t policy) {
switch (policy) {
case ssl_compliance_policy_fips_202205:
return fips202205::Configure(ssl);
case ssl_compliance_policy_wpa3_192_202304:
return wpa202304::Configure(ssl);
case ssl_compliance_policy_cnsa_202407:
return cnsa202407::Configure(ssl);
default:
return 0;
}
}
enum ssl_compliance_policy_t SSL_get_compliance_policy(const SSL *ssl) {
return ssl->config->compliance_policy;
}