| /* |
| * DTLS implementation written by Nagendra Modadugu |
| * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
| // for these values? Notably, why is kMinMTU a function of the transport |
| // protocol's overhead rather than, say, what's needed to hold a minimally-sized |
| // handshake fragment plus protocol overhead. |
| |
| // kMinMTU is the minimum acceptable MTU value. |
| static const unsigned int kMinMTU = 256 - 28; |
| |
| // kDefaultMTU is the default MTU value to use if neither the user nor |
| // the underlying BIO supplies one. |
| static const unsigned int kDefaultMTU = 1500 - 28; |
| |
| // BitRange returns a |uint8_t| with bits |start|, inclusive, to |end|, |
| // exclusive, set. |
| static uint8_t BitRange(size_t start, size_t end) { |
| assert(start <= end && end <= 8); |
| return static_cast<uint8_t>(~((1u << start) - 1) & ((1u << end) - 1)); |
| } |
| |
| // FirstUnmarkedRangeInByte returns the first unmarked range in bits |b|. |
| static DTLSMessageBitmap::Range FirstUnmarkedRangeInByte(uint8_t b) { |
| size_t start, end; |
| for (start = 0; start < 8; start++) { |
| if ((b & (1u << start)) == 0) { |
| break; |
| } |
| } |
| for (end = start; end < 8; end++) { |
| if ((b & (1u << end)) != 0) { |
| break; |
| } |
| } |
| return DTLSMessageBitmap::Range{start, end}; |
| } |
| |
| bool DTLSMessageBitmap::Init(size_t num_bits) { |
| if (num_bits + 7 < num_bits) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| size_t num_bytes = (num_bits + 7) / 8; |
| size_t bits_rounded = num_bytes * 8; |
| if (!bytes_.Init(num_bytes)) { |
| return false; |
| } |
| MarkRange(num_bits, bits_rounded); |
| first_unmarked_byte_ = 0; |
| return true; |
| } |
| |
| void DTLSMessageBitmap::MarkRange(size_t start, size_t end) { |
| assert(start <= end); |
| // Don't bother touching bytes that have already been marked. |
| start = std::max(start, first_unmarked_byte_ << 3); |
| // Clamp everything within range. |
| start = std::min(start, bytes_.size() << 3); |
| end = std::min(end, bytes_.size() << 3); |
| if (start >= end) { |
| return; |
| } |
| |
| if ((start >> 3) == (end >> 3)) { |
| bytes_[start >> 3] |= BitRange(start & 7, end & 7); |
| } else { |
| bytes_[start >> 3] |= BitRange(start & 7, 8); |
| for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
| bytes_[i] = 0xff; |
| } |
| if ((end & 7) != 0) { |
| bytes_[end >> 3] |= BitRange(0, end & 7); |
| } |
| } |
| |
| // Maintain the |first_unmarked_byte_| invariant. This work is amortized |
| // across all |MarkRange| calls. |
| while (first_unmarked_byte_ < bytes_.size() && |
| bytes_[first_unmarked_byte_] == 0xff) { |
| first_unmarked_byte_++; |
| } |
| // If the whole message is marked, we no longer need to spend memory on the |
| // bitmap. |
| if (first_unmarked_byte_ >= bytes_.size()) { |
| bytes_.Reset(); |
| first_unmarked_byte_ = 0; |
| } |
| } |
| |
| DTLSMessageBitmap::Range DTLSMessageBitmap::NextUnmarkedRange( |
| size_t start) const { |
| // Don't bother looking at bytes that are known to be fully marked. |
| start = std::max(start, first_unmarked_byte_ << 3); |
| |
| size_t idx = start >> 3; |
| if (idx >= bytes_.size()) { |
| return Range{0, 0}; |
| } |
| |
| // Look at the bits from |start| up to a byte boundary. |
| uint8_t byte = bytes_[idx] | BitRange(0, start & 7); |
| if (byte == 0xff) { |
| // Nothing unmarked at this byte. Keep searching for an unmarked bit. |
| for (idx = idx + 1; idx < bytes_.size(); idx++) { |
| if (bytes_[idx] != 0xff) { |
| byte = bytes_[idx]; |
| break; |
| } |
| } |
| if (idx >= bytes_.size()) { |
| return Range{0, 0}; |
| } |
| } |
| |
| Range range = FirstUnmarkedRangeInByte(byte); |
| assert(!range.empty()); |
| bool should_extend = range.end == 8; |
| range.start += idx << 3; |
| range.end += idx << 3; |
| if (!should_extend) { |
| // The range did not end at a byte boundary. We're done. |
| return range; |
| } |
| |
| // Collect all fully unmarked bytes. |
| for (idx = idx + 1; idx < bytes_.size(); idx++) { |
| if (bytes_[idx] != 0) { |
| break; |
| } |
| } |
| range.end = idx << 3; |
| |
| // Add any bits from the remaining byte, if any. |
| if (idx < bytes_.size()) { |
| Range extra = FirstUnmarkedRangeInByte(bytes_[idx]); |
| if (extra.start == 0) { |
| range.end += extra.end; |
| } |
| } |
| |
| return range; |
| } |
| |
| // Receiving handshake messages. |
| |
| static UniquePtr<DTLSIncomingMessage> dtls_new_incoming_message( |
| const struct hm_header_st *msg_hdr) { |
| ScopedCBB cbb; |
| UniquePtr<DTLSIncomingMessage> frag = MakeUnique<DTLSIncomingMessage>(); |
| if (!frag) { |
| return nullptr; |
| } |
| frag->type = msg_hdr->type; |
| frag->seq = msg_hdr->seq; |
| |
| // Allocate space for the reassembled message and fill in the header. |
| if (!frag->data.InitForOverwrite(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len)) { |
| return nullptr; |
| } |
| |
| if (!CBB_init_fixed(cbb.get(), frag->data.data(), DTLS1_HM_HEADER_LENGTH) || |
| !CBB_add_u8(cbb.get(), msg_hdr->type) || |
| !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| !CBB_add_u16(cbb.get(), msg_hdr->seq) || |
| !CBB_add_u24(cbb.get(), 0 /* frag_off */) || |
| !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| !CBB_finish(cbb.get(), NULL, NULL)) { |
| return nullptr; |
| } |
| |
| if (!frag->reassembly.Init(msg_hdr->msg_len)) { |
| return nullptr; |
| } |
| |
| return frag; |
| } |
| |
| // dtls1_is_current_message_complete returns whether the current handshake |
| // message is complete. |
| static bool dtls1_is_current_message_complete(const SSL *ssl) { |
| size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); |
| return frag != nullptr && frag->reassembly.IsComplete(); |
| } |
| |
| // dtls1_get_incoming_message returns the incoming message corresponding to |
| // |msg_hdr|. If none exists, it creates a new one and inserts it in the |
| // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
| // returns NULL on failure. The caller does not take ownership of the result. |
| static DTLSIncomingMessage *dtls1_get_incoming_message( |
| SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { |
| if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
| msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return NULL; |
| } |
| |
| size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); |
| if (frag != NULL) { |
| assert(frag->seq == msg_hdr->seq); |
| // The new fragment must be compatible with the previous fragments from this |
| // message. |
| if (frag->type != msg_hdr->type || // |
| frag->msg_len() != msg_hdr->msg_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return NULL; |
| } |
| return frag; |
| } |
| |
| // This is the first fragment from this message. |
| ssl->d1->incoming_messages[idx] = dtls_new_incoming_message(msg_hdr); |
| if (!ssl->d1->incoming_messages[idx]) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return NULL; |
| } |
| return ssl->d1->incoming_messages[idx].get(); |
| } |
| |
| bool dtls1_process_handshake_fragments(SSL *ssl, uint8_t *out_alert, |
| DTLSRecordNumber record_number, |
| Span<const uint8_t> record) { |
| bool implicit_ack = false; |
| bool skipped_fragments = false; |
| CBS cbs = record; |
| while (CBS_len(&cbs) > 0) { |
| // Read a handshake fragment. |
| struct hm_header_st msg_hdr; |
| CBS body; |
| if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| const size_t frag_off = msg_hdr.frag_off; |
| const size_t frag_len = msg_hdr.frag_len; |
| const size_t msg_len = msg_hdr.msg_len; |
| if (frag_off > msg_len || frag_len > msg_len - frag_off) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
| ssl->d1->handshake_read_overflow) { |
| // Ignore fragments from the past. This is a retransmit of data we already |
| // received. |
| // |
| // TODO(crbug.com/42290594): Use this to drive retransmits. |
| continue; |
| } |
| |
| if (record_number.epoch() != ssl->d1->read_epoch.epoch || |
| ssl->d1->next_read_epoch != nullptr) { |
| // New messages can only arrive in the latest epoch. This can fail if the |
| // record came from |prev_read_epoch|, or if it came from |read_epoch| but |
| // |next_read_epoch| exists. (It cannot come from |next_read_epoch| |
| // because |next_read_epoch| becomes |read_epoch| once it receives a |
| // record.) |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return false; |
| } |
| |
| if (msg_len > ssl_max_handshake_message_len(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| if (SSL_in_init(ssl) && ssl_has_final_version(ssl) && |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| // During the handshake, if we receive any portion of the next flight, the |
| // peer must have received our most recent flight. In DTLS 1.3, this is an |
| // implicit ACK. See RFC 9147, Section 7.1. |
| // |
| // This only applies during the handshake. After the handshake, the next |
| // message may be part of a post-handshake transaction. It also does not |
| // apply immediately after the handshake. As a client, receiving a |
| // KeyUpdate or NewSessionTicket does not imply the server has received |
| // our Finished. The server may have sent those messages in half-RTT. |
| implicit_ack = true; |
| } |
| |
| if (msg_hdr.seq - ssl->d1->handshake_read_seq > SSL_MAX_HANDSHAKE_FLIGHT) { |
| // Ignore fragments too far in the future. |
| skipped_fragments = true; |
| continue; |
| } |
| |
| DTLSIncomingMessage *frag = |
| dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); |
| if (frag == nullptr) { |
| return false; |
| } |
| assert(frag->msg_len() == msg_len); |
| |
| if (frag->reassembly.IsComplete()) { |
| // The message is already assembled. |
| continue; |
| } |
| assert(msg_len > 0); |
| |
| // Copy the body into the fragment. |
| Span<uint8_t> dest = frag->msg().subspan(frag_off, CBS_len(&body)); |
| OPENSSL_memcpy(dest.data(), CBS_data(&body), CBS_len(&body)); |
| frag->reassembly.MarkRange(frag_off, frag_off + frag_len); |
| } |
| |
| if (implicit_ack) { |
| dtls1_stop_timer(ssl); |
| dtls_clear_outgoing_messages(ssl); |
| } |
| |
| if (!skipped_fragments) { |
| ssl->d1->records_to_ack.PushBack(record_number); |
| |
| if (ssl_has_final_version(ssl) && |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
| !ssl->d1->ack_timer.IsSet() && !ssl->d1->sending_ack) { |
| // Schedule sending an ACK. The delay serves several purposes: |
| // - If there are more records to come, we send only one ACK. |
| // - If there are more records to come and the flight is now complete, we |
| // will send the reply (which implicitly ACKs the previous flight) and |
| // cancel the timer. |
| // - If there are more records to come, the flight is now complete, but |
| // generating the response is delayed (e.g. a slow, async private key), |
| // the timer will fire and we send an ACK anyway. |
| OPENSSL_timeval now = ssl_ctx_get_current_time(ssl->ctx.get()); |
| ssl->d1->ack_timer.StartMicroseconds( |
| now, uint64_t{ssl->d1->timeout_duration_ms} * 1000 / 4); |
| } |
| } |
| |
| return true; |
| } |
| |
| ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in) { |
| uint8_t type; |
| DTLSRecordNumber record_number; |
| Span<uint8_t> record; |
| auto ret = dtls_open_record(ssl, &type, &record_number, &record, out_consumed, |
| out_alert, in); |
| if (ret != ssl_open_record_success) { |
| return ret; |
| } |
| |
| switch (type) { |
| case SSL3_RT_APPLICATION_DATA: |
| // In DTLS 1.2, out-of-order application data may be received between |
| // ChangeCipherSpec and Finished. Discard it. |
| return ssl_open_record_discard; |
| |
| case SSL3_RT_CHANGE_CIPHER_SPEC: |
| if (record.size() != 1u || record[0] != SSL3_MT_CCS) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return ssl_open_record_error; |
| } |
| |
| // We do not support renegotiation, so encrypted ChangeCipherSpec records |
| // are illegal. |
| if (record_number.epoch() != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| // Ignore ChangeCipherSpec from a previous epoch. |
| if (record_number.epoch() != ssl->d1->read_epoch.epoch) { |
| return ssl_open_record_discard; |
| } |
| |
| // Flag the ChangeCipherSpec for later. |
| // TODO(crbug.com/42290594): Should we reject this in DTLS 1.3? |
| ssl->d1->has_change_cipher_spec = true; |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| record); |
| return ssl_open_record_success; |
| |
| case SSL3_RT_ACK: |
| return dtls1_process_ack(ssl, out_alert, record_number, record); |
| |
| case SSL3_RT_HANDSHAKE: |
| if (!dtls1_process_handshake_fragments(ssl, out_alert, record_number, |
| record)) { |
| return ssl_open_record_error; |
| } |
| return ssl_open_record_success; |
| |
| default: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| } |
| |
| bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { |
| if (!dtls1_is_current_message_complete(ssl)) { |
| return false; |
| } |
| |
| size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| const DTLSIncomingMessage *frag = ssl->d1->incoming_messages[idx].get(); |
| out->type = frag->type; |
| out->raw = CBS(frag->data); |
| out->body = CBS(frag->msg()); |
| out->is_v2_hello = false; |
| if (!ssl->s3->has_message) { |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); |
| ssl->s3->has_message = true; |
| } |
| return true; |
| } |
| |
| void dtls1_next_message(SSL *ssl) { |
| assert(ssl->s3->has_message); |
| assert(dtls1_is_current_message_complete(ssl)); |
| size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| ssl->d1->incoming_messages[index].reset(); |
| ssl->d1->handshake_read_seq++; |
| if (ssl->d1->handshake_read_seq == 0) { |
| ssl->d1->handshake_read_overflow = true; |
| } |
| ssl->s3->has_message = false; |
| // If we previously sent a flight, mark it as having a reply, so |
| // |on_handshake_complete| can manage post-handshake retransmission. |
| if (ssl->d1->outgoing_messages_complete) { |
| ssl->d1->flight_has_reply = true; |
| } |
| } |
| |
| bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { |
| size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
| // Skip the current message. |
| if (ssl->s3->has_message && i == current) { |
| assert(dtls1_is_current_message_complete(ssl)); |
| continue; |
| } |
| if (ssl->d1->incoming_messages[i] != nullptr) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, |
| CBS *out_body) { |
| OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
| |
| if (!CBS_get_u8(cbs, &out_hdr->type) || |
| !CBS_get_u24(cbs, &out_hdr->msg_len) || |
| !CBS_get_u16(cbs, &out_hdr->seq) || |
| !CBS_get_u24(cbs, &out_hdr->frag_off) || |
| !CBS_get_u24(cbs, &out_hdr->frag_len) || |
| !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in) { |
| if (!ssl->d1->has_change_cipher_spec) { |
| // dtls1_open_handshake processes both handshake and ChangeCipherSpec. |
| auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); |
| if (ret != ssl_open_record_success) { |
| return ret; |
| } |
| } |
| if (ssl->d1->has_change_cipher_spec) { |
| ssl->d1->has_change_cipher_spec = false; |
| return ssl_open_record_success; |
| } |
| return ssl_open_record_discard; |
| } |
| |
| |
| // Sending handshake messages. |
| |
| void dtls_clear_outgoing_messages(SSL *ssl) { |
| ssl->d1->outgoing_messages.clear(); |
| ssl->d1->sent_records = nullptr; |
| ssl->d1->outgoing_written = 0; |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->outgoing_messages_complete = false; |
| ssl->d1->flight_has_reply = false; |
| ssl->d1->sending_flight = false; |
| dtls_clear_unused_write_epochs(ssl); |
| } |
| |
| void dtls_clear_unused_write_epochs(SSL *ssl) { |
| ssl->d1->extra_write_epochs.EraseIf( |
| [ssl](const UniquePtr<DTLSWriteEpoch> &write_epoch) -> bool { |
| // Non-current epochs may be discarded once there are no incomplete |
| // outgoing messages that reference them. |
| // |
| // TODO(crbug.com/42290594): Epoch 1 (0-RTT) should be retained until |
| // epoch 3 (app data) is available. |
| for (const auto &msg : ssl->d1->outgoing_messages) { |
| if (msg.epoch == write_epoch->epoch() && !msg.IsFullyAcked()) { |
| return false; |
| } |
| } |
| return true; |
| }); |
| } |
| |
| bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
| // Pick a modest size hint to save most of the |realloc| calls. |
| if (!CBB_init(cbb, 64) || // |
| !CBB_add_u8(cbb, type) || // |
| !CBB_add_u24(cbb, 0 /* length (filled in later) */) || // |
| !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || // |
| !CBB_add_u24(cbb, 0 /* offset */) || // |
| !CBB_add_u24_length_prefixed(cbb, body)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { |
| if (!CBBFinishArray(cbb, out_msg) || |
| out_msg->size() < DTLS1_HM_HEADER_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| // Fix up the header. Copy the fragment length into the total message |
| // length. |
| OPENSSL_memcpy(out_msg->data() + 1, |
| out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); |
| return true; |
| } |
| |
| // add_outgoing adds a new handshake message or ChangeCipherSpec to the current |
| // outgoing flight. It returns true on success and false on error. |
| static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { |
| if (ssl->d1->outgoing_messages_complete) { |
| // If we've begun writing a new flight, we received the peer flight. Discard |
| // the timer and the our flight. |
| dtls1_stop_timer(ssl); |
| dtls_clear_outgoing_messages(ssl); |
| } |
| |
| if (!is_ccs) { |
| if (ssl->d1->handshake_write_overflow) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return false; |
| } |
| // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript |
| // on hs. |
| if (ssl->s3->hs != NULL && !ssl->s3->hs->transcript.Update(data)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| ssl->d1->handshake_write_seq++; |
| if (ssl->d1->handshake_write_seq == 0) { |
| ssl->d1->handshake_write_overflow = true; |
| } |
| } |
| |
| DTLSOutgoingMessage msg; |
| msg.data = std::move(data); |
| msg.epoch = ssl->d1->write_epoch.epoch(); |
| msg.is_ccs = is_ccs; |
| // Zero-length messages need 1 bit to track whether the peer has received the |
| // message header. (Normally the message header is implicitly received when |
| // any fragment of the message is received at all.) |
| if (!is_ccs && !msg.acked.Init(std::max(msg.msg_len(), size_t{1}))) { |
| return false; |
| } |
| |
| // This should not fail if |SSL_MAX_HANDSHAKE_FLIGHT| was sized correctly. |
| // |
| // TODO(crbug.com/42290594): This can currently fail in DTLS 1.3. The caller |
| // can configure how many tickets to send, up to kMaxTickets. Additionally, if |
| // we send 0.5-RTT tickets in 0-RTT, we may even have tickets queued up with |
| // the server flight. |
| if (!ssl->d1->outgoing_messages.TryPushBack(std::move(msg))) { |
| assert(false); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { |
| return add_outgoing(ssl, false /* handshake */, std::move(data)); |
| } |
| |
| bool dtls1_add_change_cipher_spec(SSL *ssl) { |
| // DTLS 1.3 disables compatibility mode, which means that DTLS 1.3 never sends |
| // a ChangeCipherSpec message. |
| if (ssl_protocol_version(ssl) > TLS1_2_VERSION) { |
| return true; |
| } |
| return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); |
| } |
| |
| // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above |
| // the minimum. |
| static void dtls1_update_mtu(SSL *ssl) { |
| // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the |
| // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use |
| // |SSL_set_mtu|. Does this need to be so complex? |
| if (ssl->d1->mtu < dtls1_min_mtu() && |
| !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
| long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
| if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
| ssl->d1->mtu = (unsigned)mtu; |
| } else { |
| ssl->d1->mtu = kDefaultMTU; |
| BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
| } |
| } |
| |
| // The MTU should be above the minimum now. |
| assert(ssl->d1->mtu >= dtls1_min_mtu()); |
| } |
| |
| enum seal_result_t { |
| seal_error, |
| seal_continue, |
| seal_flush, |
| }; |
| |
| // seal_next_record seals one record's worth of messages to |out| and advances |
| // |ssl|'s internal state past the data that was sealed. If progress was made, |
| // it returns |seal_flush| or |seal_continue| and sets |
| // |*out_len| to the number of bytes written. |
| // |
| // If the function stopped because the next message could not be combined into |
| // this record, it returns |seal_continue| and the caller should loop again. |
| // Otherwise, it returns |seal_flush| and the packet is complete (either because |
| // there are no more messages or the packet is full). |
| static seal_result_t seal_next_record(SSL *ssl, Span<uint8_t> out, |
| size_t *out_len) { |
| *out_len = 0; |
| |
| // Skip any fully acked messages. |
| while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size() && |
| ssl->d1->outgoing_messages[ssl->d1->outgoing_written].IsFullyAcked()) { |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->outgoing_written++; |
| } |
| |
| // There was nothing left to write. |
| if (ssl->d1->outgoing_written >= ssl->d1->outgoing_messages.size()) { |
| return seal_flush; |
| } |
| |
| const auto &first_msg = ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
| size_t prefix_len = dtls_seal_prefix_len(ssl, first_msg.epoch); |
| size_t max_in_len = dtls_seal_max_input_len(ssl, first_msg.epoch, out.size()); |
| if (max_in_len == 0) { |
| // There is no room for a single record. |
| return seal_flush; |
| } |
| |
| if (first_msg.is_ccs) { |
| static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
| DTLSRecordNumber record_number; |
| if (!dtls_seal_record(ssl, &record_number, out.data(), out_len, out.size(), |
| SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
| sizeof(kChangeCipherSpec), first_msg.epoch)) { |
| return seal_error; |
| } |
| |
| ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_CHANGE_CIPHER_SPEC, |
| kChangeCipherSpec); |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->outgoing_written++; |
| return seal_continue; |
| } |
| |
| // TODO(crbug.com/374991962): For now, only send one message per record in |
| // epoch 0. Sending multiple is allowed and more efficient, but breaks |
| // b/378742138. |
| const bool allow_multiple_messages = first_msg.epoch != 0; |
| |
| // Pack as many handshake fragments into one record as we can. We stage the |
| // fragments in the output buffer, to be sealed in-place. |
| bool should_continue = false; |
| Span<uint8_t> fragments = out.subspan(prefix_len, max_in_len); |
| CBB cbb; |
| CBB_init_fixed(&cbb, fragments.data(), fragments.size()); |
| DTLSSentRecord sent_record; |
| sent_record.first_msg = ssl->d1->outgoing_written; |
| sent_record.first_msg_start = ssl->d1->outgoing_offset; |
| while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { |
| const auto &msg = ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
| if (msg.epoch != first_msg.epoch || msg.is_ccs) { |
| // We can only pack messages if the epoch matches. There may be more room |
| // in the packet, so tell the caller to keep going. |
| should_continue = true; |
| break; |
| } |
| |
| // Decode |msg|'s header. |
| CBS cbs(msg.data), body_cbs; |
| struct hm_header_st hdr; |
| if (!dtls1_parse_fragment(&cbs, &hdr, &body_cbs) || // |
| hdr.frag_off != 0 || // |
| hdr.frag_len != CBS_len(&body_cbs) || // |
| hdr.msg_len != CBS_len(&body_cbs) || // |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return seal_error; |
| } |
| |
| // Iterate over every un-acked range in the message, if any. |
| Span<const uint8_t> body = body_cbs; |
| for (;;) { |
| auto range = msg.acked.NextUnmarkedRange(ssl->d1->outgoing_offset); |
| if (range.empty()) { |
| // Advance to the next message. |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->outgoing_written++; |
| break; |
| } |
| |
| // Determine how much progress can be made (minimum one byte of progress). |
| size_t capacity = fragments.size() - CBB_len(&cbb); |
| if (capacity < DTLS1_HM_HEADER_LENGTH + 1) { |
| goto packet_full; |
| } |
| size_t todo = std::min(range.size(), capacity - DTLS1_HM_HEADER_LENGTH); |
| |
| // Empty messages are special-cased in ACK tracking. We act as if they |
| // have one byte, but in reality that byte is tracking the header. |
| Span<const uint8_t> frag; |
| if (!body.empty()) { |
| frag = body.subspan(range.start, todo); |
| } |
| |
| // Assemble the fragment. |
| size_t frag_start = CBB_len(&cbb); |
| CBB child; |
| if (!CBB_add_u8(&cbb, hdr.type) || // |
| !CBB_add_u24(&cbb, hdr.msg_len) || // |
| !CBB_add_u16(&cbb, hdr.seq) || // |
| !CBB_add_u24(&cbb, range.start) || // |
| !CBB_add_u24_length_prefixed(&cbb, &child) || // |
| !CBB_add_bytes(&child, frag.data(), frag.size()) || // |
| !CBB_flush(&cbb)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return seal_error; |
| } |
| size_t frag_end = CBB_len(&cbb); |
| |
| // TODO(davidben): It is odd that, on output, we inform the caller of |
| // retransmits and individual fragments, but on input we only inform the |
| // caller of complete messages. |
| ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_HANDSHAKE, |
| fragments.subspan(frag_start, frag_end - frag_start)); |
| |
| ssl->d1->outgoing_offset = range.start + todo; |
| if (todo < range.size()) { |
| // The packet was the limiting factor. |
| goto packet_full; |
| } |
| } |
| |
| if (!allow_multiple_messages) { |
| should_continue = true; |
| break; |
| } |
| } |
| |
| packet_full: |
| sent_record.last_msg = ssl->d1->outgoing_written; |
| sent_record.last_msg_end = ssl->d1->outgoing_offset; |
| |
| // We could not fit anything. Don't try to make a record. |
| if (CBB_len(&cbb) == 0) { |
| assert(!should_continue); |
| return seal_flush; |
| } |
| |
| if (!dtls_seal_record(ssl, &sent_record.number, out.data(), out_len, |
| out.size(), SSL3_RT_HANDSHAKE, CBB_data(&cbb), |
| CBB_len(&cbb), first_msg.epoch)) { |
| return seal_error; |
| } |
| |
| // If DTLS 1.3 (or if the version is not yet known and it may be DTLS 1.3), |
| // save the record number to match against ACKs later. |
| if (ssl->s3->version == 0 || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| if (ssl->d1->sent_records == nullptr) { |
| ssl->d1->sent_records = |
| MakeUnique<MRUQueue<DTLSSentRecord, DTLS_MAX_ACK_BUFFER>>(); |
| if (ssl->d1->sent_records == nullptr) { |
| return seal_error; |
| } |
| } |
| ssl->d1->sent_records->PushBack(sent_record); |
| } |
| |
| return should_continue ? seal_continue : seal_flush; |
| } |
| |
| // seal_next_packet writes as much of the next flight as possible to |out| and |
| // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as |
| // appropriate. |
| static bool seal_next_packet(SSL *ssl, Span<uint8_t> out, size_t *out_len) { |
| size_t total = 0; |
| for (;;) { |
| size_t len; |
| seal_result_t ret = seal_next_record(ssl, out, &len); |
| switch (ret) { |
| case seal_error: |
| return false; |
| |
| case seal_flush: |
| case seal_continue: |
| out = out.subspan(len); |
| total += len; |
| break; |
| } |
| |
| if (ret == seal_flush) { |
| break; |
| } |
| } |
| |
| *out_len = total; |
| return true; |
| } |
| |
| static int send_flight(SSL *ssl) { |
| if (ssl->s3->write_shutdown != ssl_shutdown_none) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| return -1; |
| } |
| |
| if (ssl->wbio == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); |
| return -1; |
| } |
| |
| if (ssl->d1->num_timeouts > DTLS1_MAX_TIMEOUTS) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_READ_TIMEOUT_EXPIRED); |
| return -1; |
| } |
| |
| dtls1_update_mtu(ssl); |
| |
| Array<uint8_t> packet; |
| if (!packet.InitForOverwrite(ssl->d1->mtu)) { |
| return -1; |
| } |
| |
| while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { |
| uint8_t old_written = ssl->d1->outgoing_written; |
| uint32_t old_offset = ssl->d1->outgoing_offset; |
| |
| size_t packet_len; |
| if (!seal_next_packet(ssl, MakeSpan(packet), &packet_len)) { |
| return -1; |
| } |
| |
| if (packet_len == 0 && |
| ssl->d1->outgoing_written < ssl->d1->outgoing_messages.size()) { |
| // We made no progress with the packet size available, but did not reach |
| // the end. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
| return false; |
| } |
| |
| if (packet_len != 0) { |
| int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len); |
| if (bio_ret <= 0) { |
| // Retry this packet the next time around. |
| ssl->d1->outgoing_written = old_written; |
| ssl->d1->outgoing_offset = old_offset; |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return bio_ret; |
| } |
| } |
| } |
| |
| if (BIO_flush(ssl->wbio.get()) <= 0) { |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| void dtls1_finish_flight(SSL *ssl) { |
| if (ssl->d1->outgoing_messages.empty() || |
| ssl->d1->outgoing_messages_complete) { |
| return; // Nothing to do. |
| } |
| |
| if (ssl->d1->outgoing_messages[0].epoch <= 2) { |
| // DTLS 1.3 handshake messages (epoch 2 and below) implicitly ACK the |
| // previous flight, so there is no need to ACK previous records. This |
| // clears the ACK buffer slightly earlier than the specification suggests. |
| // See the discussion in |
| // https://mailarchive.ietf.org/arch/msg/tls/kjJnquJOVaWxu5hUCmNzB35eqY0/ |
| ssl->d1->records_to_ack.Clear(); |
| ssl->d1->ack_timer.Stop(); |
| ssl->d1->sending_ack = false; |
| } |
| |
| ssl->d1->outgoing_messages_complete = true; |
| ssl->d1->sending_flight = true; |
| // Stop retransmitting the previous flight. In DTLS 1.3, we'll have stopped |
| // the timer already, but DTLS 1.2 keeps it running until the next flight is |
| // ready. |
| dtls1_stop_timer(ssl); |
| } |
| |
| void dtls1_schedule_ack(SSL *ssl) { |
| ssl->d1->ack_timer.Stop(); |
| ssl->d1->sending_ack = !ssl->d1->records_to_ack.empty(); |
| } |
| |
| static int send_ack(SSL *ssl) { |
| assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION); |
| |
| // Ensure we don't send so many ACKs that we overflow the MTU. There is a |
| // 2-byte length prefix and each ACK is 16 bytes. |
| dtls1_update_mtu(ssl); |
| size_t max_plaintext = |
| dtls_seal_max_input_len(ssl, ssl->d1->write_epoch.epoch(), ssl->d1->mtu); |
| if (max_plaintext < 2 + 16) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); // No room for even one ACK. |
| return -1; |
| } |
| size_t num_acks = |
| std::min((max_plaintext - 2) / 16, ssl->d1->records_to_ack.size()); |
| |
| // Assemble the ACK. RFC 9147 says to sort ACKs numerically. It is unclear if |
| // other implementations do this, but go ahead and sort for now. See |
| // https://mailarchive.ietf.org/arch/msg/tls/kjJnquJOVaWxu5hUCmNzB35eqY0/. |
| // Remove this if rfc9147bis removes this requirement. |
| InplaceVector<DTLSRecordNumber, DTLS_MAX_ACK_BUFFER> sorted; |
| for (size_t i = ssl->d1->records_to_ack.size() - num_acks; |
| i < ssl->d1->records_to_ack.size(); i++) { |
| sorted.PushBack(ssl->d1->records_to_ack[i]); |
| } |
| std::sort(sorted.begin(), sorted.end()); |
| |
| uint8_t buf[2 + 16 * DTLS_MAX_ACK_BUFFER]; |
| CBB cbb, child; |
| CBB_init_fixed(&cbb, buf, sizeof(buf)); |
| BSSL_CHECK(CBB_add_u16_length_prefixed(&cbb, &child)); |
| for (const auto &number : sorted) { |
| BSSL_CHECK(CBB_add_u64(&child, number.epoch())); |
| BSSL_CHECK(CBB_add_u64(&child, number.sequence())); |
| } |
| BSSL_CHECK(CBB_flush(&cbb)); |
| |
| // Encrypt it. |
| uint8_t record[DTLS1_3_RECORD_HEADER_WRITE_LENGTH + sizeof(buf) + |
| 1 /* record type */ + EVP_AEAD_MAX_OVERHEAD]; |
| size_t record_len; |
| DTLSRecordNumber record_number; |
| if (!dtls_seal_record(ssl, &record_number, record, &record_len, |
| sizeof(record), SSL3_RT_ACK, CBB_data(&cbb), |
| CBB_len(&cbb), ssl->d1->write_epoch.epoch())) { |
| return -1; |
| } |
| |
| ssl_do_msg_callback(ssl, /*is_write=*/1, SSL3_RT_ACK, |
| MakeConstSpan(CBB_data(&cbb), CBB_len(&cbb))); |
| |
| int bio_ret = |
| BIO_write(ssl->wbio.get(), record, static_cast<int>(record_len)); |
| if (bio_ret <= 0) { |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return bio_ret; |
| } |
| |
| if (BIO_flush(ssl->wbio.get()) <= 0) { |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| int dtls1_flush(SSL *ssl) { |
| // Send the pending ACK, if any. |
| if (ssl->d1->sending_ack) { |
| int ret = send_ack(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| ssl->d1->sending_ack = false; |
| } |
| |
| // Send the pending flight, if any. |
| if (ssl->d1->sending_flight) { |
| int ret = send_flight(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| |
| // Reset state for the next send. |
| ssl->d1->outgoing_written = 0; |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->sending_flight = false; |
| |
| // Schedule the next retransmit timer. In DTLS 1.3, we retransmit all |
| // flights until ACKed. In DTLS 1.2, the final Finished flight is never |
| // ACKed, so we do not keep the timer running after the handshake. |
| if (SSL_in_init(ssl) || ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| if (ssl->d1->num_timeouts == 0) { |
| ssl->d1->timeout_duration_ms = ssl->initial_timeout_duration_ms; |
| } else { |
| ssl->d1->timeout_duration_ms = |
| std::min(ssl->d1->timeout_duration_ms * 2, uint32_t{60000}); |
| } |
| |
| OPENSSL_timeval now = ssl_ctx_get_current_time(ssl->ctx.get()); |
| ssl->d1->retransmit_timer.StartMicroseconds( |
| now, uint64_t{ssl->d1->timeout_duration_ms} * 1000); |
| } |
| } |
| |
| return 1; |
| } |
| |
| unsigned int dtls1_min_mtu(void) { return kMinMTU; } |
| |
| BSSL_NAMESPACE_END |