| /* Originally written by Bodo Moeller for the OpenSSL project. | 
 |  * ==================================================================== | 
 |  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
 |  * | 
 |  * Portions of the attached software ("Contribution") are developed by | 
 |  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
 |  * | 
 |  * The Contribution is licensed pursuant to the OpenSSL open source | 
 |  * license provided above. | 
 |  * | 
 |  * The elliptic curve binary polynomial software is originally written by | 
 |  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
 |  * Laboratories. */ | 
 |  | 
 | #include <openssl/ec.h> | 
 |  | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../../internal.h" | 
 |  | 
 |  | 
 | // Most method functions in this file are designed to work with non-trivial | 
 | // representations of field elements if necessary (see ecp_mont.c): while | 
 | // standard modular addition and subtraction are used, the field_mul and | 
 | // field_sqr methods will be used for multiplication, and field_encode and | 
 | // field_decode (if defined) will be used for converting between | 
 | // representations. | 
 | // | 
 | // Functions here specifically assume that if a non-trivial representation is | 
 | // used, it is a Montgomery representation (i.e. 'encoding' means multiplying | 
 | // by some factor R). | 
 |  | 
 | int ec_GFp_simple_group_init(EC_GROUP *group) { | 
 |   BN_init(&group->field); | 
 |   group->a_is_minus3 = 0; | 
 |   return 1; | 
 | } | 
 |  | 
 | void ec_GFp_simple_group_finish(EC_GROUP *group) { | 
 |   BN_free(&group->field); | 
 | } | 
 |  | 
 | int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
 |                                   const BIGNUM *a, const BIGNUM *b, | 
 |                                   BN_CTX *ctx) { | 
 |   // p must be a prime > 3 | 
 |   if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   BN_CTX_start(ctx); | 
 |   BIGNUM *tmp = BN_CTX_get(ctx); | 
 |   if (tmp == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // group->field | 
 |   if (!BN_copy(&group->field, p)) { | 
 |     goto err; | 
 |   } | 
 |   BN_set_negative(&group->field, 0); | 
 |   // Store the field in minimal form, so it can be used with |BN_ULONG| arrays. | 
 |   bn_set_minimal_width(&group->field); | 
 |  | 
 |   if (!ec_bignum_to_felem(group, &group->a, a) || | 
 |       !ec_bignum_to_felem(group, &group->b, b) || | 
 |       !ec_bignum_to_felem(group, &group->one, BN_value_one())) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // group->a_is_minus3 | 
 |   if (!BN_copy(tmp, a) || | 
 |       !BN_add_word(tmp, 3)) { | 
 |     goto err; | 
 |   } | 
 |   group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | 
 |                                   BIGNUM *b) { | 
 |   if ((p != NULL && !BN_copy(p, &group->field)) || | 
 |       (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || | 
 |       (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | void ec_GFp_simple_point_init(EC_RAW_POINT *point) { | 
 |   OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); | 
 |   OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); | 
 |   OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); | 
 | } | 
 |  | 
 | void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { | 
 |   OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); | 
 |   OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); | 
 |   OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); | 
 | } | 
 |  | 
 | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, | 
 |                                          EC_RAW_POINT *point) { | 
 |   // Although it is strictly only necessary to zero Z, we zero the entire point | 
 |   // in case |point| was stack-allocated and yet to be initialized. | 
 |   ec_GFp_simple_point_init(point); | 
 | } | 
 |  | 
 | void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { | 
 |   ec_felem_neg(group, &point->Y, &point->Y); | 
 | } | 
 |  | 
 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, | 
 |                                  const EC_RAW_POINT *point) { | 
 |   return ec_felem_non_zero_mask(group, &point->Z) == 0; | 
 | } | 
 |  | 
 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, | 
 |                               const EC_RAW_POINT *point) { | 
 |   // We have a curve defined by a Weierstrass equation | 
 |   //      y^2 = x^3 + a*x + b. | 
 |   // The point to consider is given in Jacobian projective coordinates | 
 |   // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3). | 
 |   // Substituting this and multiplying by  Z^6  transforms the above equation | 
 |   // into | 
 |   //      Y^2 = X^3 + a*X*Z^4 + b*Z^6. | 
 |   // To test this, we add up the right-hand side in 'rh'. | 
 |   // | 
 |   // This function may be used when double-checking the secret result of a point | 
 |   // multiplication, so we proceed in constant-time. | 
 |  | 
 |   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
 |                           const EC_FELEM *b) = group->meth->felem_mul; | 
 |   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
 |       group->meth->felem_sqr; | 
 |  | 
 |   // rh := X^2 | 
 |   EC_FELEM rh; | 
 |   felem_sqr(group, &rh, &point->X); | 
 |  | 
 |   EC_FELEM tmp, Z4, Z6; | 
 |   felem_sqr(group, &tmp, &point->Z); | 
 |   felem_sqr(group, &Z4, &tmp); | 
 |   felem_mul(group, &Z6, &Z4, &tmp); | 
 |  | 
 |   // rh := rh + a*Z^4 | 
 |   if (group->a_is_minus3) { | 
 |     ec_felem_add(group, &tmp, &Z4, &Z4); | 
 |     ec_felem_add(group, &tmp, &tmp, &Z4); | 
 |     ec_felem_sub(group, &rh, &rh, &tmp); | 
 |   } else { | 
 |     felem_mul(group, &tmp, &Z4, &group->a); | 
 |     ec_felem_add(group, &rh, &rh, &tmp); | 
 |   } | 
 |  | 
 |   // rh := (rh + a*Z^4)*X | 
 |   felem_mul(group, &rh, &rh, &point->X); | 
 |  | 
 |   // rh := rh + b*Z^6 | 
 |   felem_mul(group, &tmp, &group->b, &Z6); | 
 |   ec_felem_add(group, &rh, &rh, &tmp); | 
 |  | 
 |   // 'lh' := Y^2 | 
 |   felem_sqr(group, &tmp, &point->Y); | 
 |  | 
 |   ec_felem_sub(group, &tmp, &tmp, &rh); | 
 |   BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp); | 
 |  | 
 |   // If Z = 0, the point is infinity, which is always on the curve. | 
 |   BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z); | 
 |  | 
 |   return 1 & ~(not_infinity & not_equal); | 
 | } | 
 |  | 
 | int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_RAW_POINT *a, | 
 |                                const EC_RAW_POINT *b) { | 
 |   // This function is implemented in constant-time for two reasons. First, | 
 |   // although EC points are usually public, their Jacobian Z coordinates may be | 
 |   // secret, or at least are not obviously public. Second, more complex | 
 |   // protocols will sometimes manipulate secret points. | 
 |   // | 
 |   // This does mean that we pay a 6M+2S Jacobian comparison when comparing two | 
 |   // publicly affine points costs no field operations at all. If needed, we can | 
 |   // restore this optimization by keeping better track of affine vs. Jacobian | 
 |   // forms. See https://crbug.com/boringssl/326. | 
 |  | 
 |   // If neither |a| or |b| is infinity, we have to decide whether | 
 |   //     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), | 
 |   // or equivalently, whether | 
 |   //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | 
 |  | 
 |   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
 |                           const EC_FELEM *b) = group->meth->felem_mul; | 
 |   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
 |       group->meth->felem_sqr; | 
 |  | 
 |   EC_FELEM tmp1, tmp2, Za23, Zb23; | 
 |   felem_sqr(group, &Zb23, &b->Z);         // Zb23 = Z_b^2 | 
 |   felem_mul(group, &tmp1, &a->X, &Zb23);  // tmp1 = X_a * Z_b^2 | 
 |   felem_sqr(group, &Za23, &a->Z);         // Za23 = Z_a^2 | 
 |   felem_mul(group, &tmp2, &b->X, &Za23);  // tmp2 = X_b * Z_a^2 | 
 |   ec_felem_sub(group, &tmp1, &tmp1, &tmp2); | 
 |   const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1); | 
 |  | 
 |   felem_mul(group, &Zb23, &Zb23, &b->Z);  // Zb23 = Z_b^3 | 
 |   felem_mul(group, &tmp1, &a->Y, &Zb23);  // tmp1 = Y_a * Z_b^3 | 
 |   felem_mul(group, &Za23, &Za23, &a->Z);  // Za23 = Z_a^3 | 
 |   felem_mul(group, &tmp2, &b->Y, &Za23);  // tmp2 = Y_b * Z_a^3 | 
 |   ec_felem_sub(group, &tmp1, &tmp1, &tmp2); | 
 |   const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1); | 
 |   const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); | 
 |  | 
 |   const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z); | 
 |   const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); | 
 |   const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity); | 
 |  | 
 |   const BN_ULONG equal = | 
 |       a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal); | 
 |   return equal & 1; | 
 | } | 
 |  | 
 | int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a, | 
 |                              const EC_RAW_POINT *b) { | 
 |   // If |b| is not infinity, we have to decide whether | 
 |   //     (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3), | 
 |   // or equivalently, whether | 
 |   //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b). | 
 |  | 
 |   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
 |                           const EC_FELEM *b) = group->meth->felem_mul; | 
 |   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
 |       group->meth->felem_sqr; | 
 |  | 
 |   EC_FELEM tmp, Zb2; | 
 |   felem_sqr(group, &Zb2, &b->Z);        // Zb2 = Z_b^2 | 
 |   felem_mul(group, &tmp, &a->X, &Zb2);  // tmp = X_a * Z_b^2 | 
 |   ec_felem_sub(group, &tmp, &tmp, &b->X); | 
 |   const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp); | 
 |  | 
 |   felem_mul(group, &tmp, &a->Y, &Zb2);  // tmp = Y_a * Z_b^2 | 
 |   felem_mul(group, &tmp, &tmp, &b->Z);  // tmp = Y_a * Z_b^3 | 
 |   ec_felem_sub(group, &tmp, &tmp, &b->Y); | 
 |   const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp); | 
 |   const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); | 
 |  | 
 |   const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); | 
 |  | 
 |   const BN_ULONG equal = b_not_infinity & x_and_y_equal; | 
 |   return equal & 1; | 
 | } | 
 |  | 
 | int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, | 
 |                                    const EC_SCALAR *r) { | 
 |   if (ec_GFp_simple_is_at_infinity(group, p)) { | 
 |     // |ec_get_x_coordinate_as_scalar| will check this internally, but this way | 
 |     // we do not push to the error queue. | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EC_SCALAR x; | 
 |   return ec_get_x_coordinate_as_scalar(group, &x, p) && | 
 |          ec_scalar_equal_vartime(group, &x, r); | 
 | } | 
 |  | 
 | void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out, | 
 |                                   size_t *out_len, const EC_FELEM *in) { | 
 |   size_t len = BN_num_bytes(&group->field); | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     out[i] = in->bytes[len - 1 - i]; | 
 |   } | 
 |   *out_len = len; | 
 | } | 
 |  | 
 | int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, | 
 |                                    const uint8_t *in, size_t len) { | 
 |   if (len != BN_num_bytes(&group->field)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memset(out, 0, sizeof(EC_FELEM)); | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     out->bytes[i] = in[len - 1 - i]; | 
 |   } | 
 |  | 
 |   if (!bn_less_than_words(out->words, group->field.d, group->field.width)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } |