|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/base64.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/type_check.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| | 
|  | // arguments for a slightly simpler implementation. | 
|  | static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { | 
|  | crypto_word_t aw = a; | 
|  | crypto_word_t bw = b; | 
|  | // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same | 
|  | // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. | 
|  | return constant_time_msb_w(aw - bw); | 
|  | } | 
|  |  | 
|  | // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| | 
|  | // and |CONSTTIME_FALSE_8| otherwise. | 
|  | static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, | 
|  | uint8_t max) { | 
|  | a -= min; | 
|  | return constant_time_lt_args_8(a, max - min + 1); | 
|  | } | 
|  |  | 
|  | // Encoding. | 
|  |  | 
|  | static uint8_t conv_bin2ascii(uint8_t a) { | 
|  | // Since PEM is sometimes used to carry private keys, we encode base64 data | 
|  | // itself in constant-time. | 
|  | a &= 0x3f; | 
|  | uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); | 
|  | ret = | 
|  | constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); | 
|  | ret = | 
|  | constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); | 
|  | ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | OPENSSL_STATIC_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, | 
|  | "data length must be a multiple of base64 chunk size"); | 
|  |  | 
|  | int EVP_EncodedLength(size_t *out_len, size_t len) { | 
|  | if (len + 2 < len) { | 
|  | return 0; | 
|  | } | 
|  | len += 2; | 
|  | len /= 3; | 
|  |  | 
|  | if (((len << 2) >> 2) != len) { | 
|  | return 0; | 
|  | } | 
|  | len <<= 2; | 
|  |  | 
|  | if (len + 1 < len) { | 
|  | return 0; | 
|  | } | 
|  | len++; | 
|  |  | 
|  | *out_len = len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) { | 
|  | EVP_ENCODE_CTX *ret = OPENSSL_malloc(sizeof(EVP_ENCODE_CTX)); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | OPENSSL_memset(ret, 0, sizeof(EVP_ENCODE_CTX)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) { | 
|  | OPENSSL_free(ctx); | 
|  | } | 
|  |  | 
|  | void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { | 
|  | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); | 
|  | } | 
|  |  | 
|  | void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | size_t total = 0; | 
|  |  | 
|  | *out_len = 0; | 
|  | if (in_len == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(ctx->data_used < sizeof(ctx->data)); | 
|  |  | 
|  | if (sizeof(ctx->data) - ctx->data_used > in_len) { | 
|  | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); | 
|  | ctx->data_used += (unsigned)in_len; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ctx->data_used != 0) { | 
|  | const size_t todo = sizeof(ctx->data) - ctx->data_used; | 
|  | OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); | 
|  | in += todo; | 
|  | in_len -= todo; | 
|  |  | 
|  | size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); | 
|  | ctx->data_used = 0; | 
|  |  | 
|  | out += encoded; | 
|  | *(out++) = '\n'; | 
|  | *out = '\0'; | 
|  |  | 
|  | total = encoded + 1; | 
|  | } | 
|  |  | 
|  | while (in_len >= sizeof(ctx->data)) { | 
|  | size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); | 
|  | in += sizeof(ctx->data); | 
|  | in_len -= sizeof(ctx->data); | 
|  |  | 
|  | out += encoded; | 
|  | *(out++) = '\n'; | 
|  | *out = '\0'; | 
|  |  | 
|  | if (total + encoded + 1 < total) { | 
|  | *out_len = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | total += encoded + 1; | 
|  | } | 
|  |  | 
|  | if (in_len != 0) { | 
|  | OPENSSL_memcpy(ctx->data, in, in_len); | 
|  | } | 
|  |  | 
|  | ctx->data_used = (unsigned)in_len; | 
|  |  | 
|  | if (total > INT_MAX) { | 
|  | // We cannot signal an error, but we can at least avoid making *out_len | 
|  | // negative. | 
|  | total = 0; | 
|  | } | 
|  | *out_len = (int)total; | 
|  | } | 
|  |  | 
|  | void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | if (ctx->data_used == 0) { | 
|  | *out_len = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); | 
|  | out[encoded++] = '\n'; | 
|  | out[encoded] = '\0'; | 
|  | ctx->data_used = 0; | 
|  |  | 
|  | // ctx->data_used is bounded by sizeof(ctx->data), so this does not | 
|  | // overflow. | 
|  | assert(encoded <= INT_MAX); | 
|  | *out_len = (int)encoded; | 
|  | } | 
|  |  | 
|  | size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { | 
|  | uint32_t l; | 
|  | size_t remaining = src_len, ret = 0; | 
|  |  | 
|  | while (remaining) { | 
|  | if (remaining >= 3) { | 
|  | l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; | 
|  | *(dst++) = conv_bin2ascii(l >> 18L); | 
|  | *(dst++) = conv_bin2ascii(l >> 12L); | 
|  | *(dst++) = conv_bin2ascii(l >> 6L); | 
|  | *(dst++) = conv_bin2ascii(l); | 
|  | remaining -= 3; | 
|  | } else { | 
|  | l = ((uint32_t)src[0]) << 16L; | 
|  | if (remaining == 2) { | 
|  | l |= ((uint32_t)src[1] << 8L); | 
|  | } | 
|  |  | 
|  | *(dst++) = conv_bin2ascii(l >> 18L); | 
|  | *(dst++) = conv_bin2ascii(l >> 12L); | 
|  | *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); | 
|  | *(dst++) = '='; | 
|  | remaining = 0; | 
|  | } | 
|  | ret += 4; | 
|  | src += 3; | 
|  | } | 
|  |  | 
|  | *dst = '\0'; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Decoding. | 
|  |  | 
|  | int EVP_DecodedLength(size_t *out_len, size_t len) { | 
|  | if (len % 4 != 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_len = (len / 4) * 3; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { | 
|  | OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); | 
|  | } | 
|  |  | 
|  | static uint8_t base64_ascii_to_bin(uint8_t a) { | 
|  | // Since PEM is sometimes used to carry private keys, we decode base64 data | 
|  | // itself in constant-time. | 
|  | const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); | 
|  | const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); | 
|  | const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); | 
|  | const uint8_t is_plus = constant_time_eq_8(a, '+'); | 
|  | const uint8_t is_slash = constant_time_eq_8(a, '/'); | 
|  | const uint8_t is_equals = constant_time_eq_8(a, '='); | 
|  |  | 
|  | uint8_t ret = 0; | 
|  | ret |= is_upper & (a - 'A');       // [0,26) | 
|  | ret |= is_lower & (a - 'a' + 26);  // [26,52) | 
|  | ret |= is_digit & (a - '0' + 52);  // [52,62) | 
|  | ret |= is_plus & 62; | 
|  | ret |= is_slash & 63; | 
|  | // Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid | 
|  | // inputs to 0xff. Note '=' is padding and handled separately by the caller. | 
|  | const uint8_t is_valid = | 
|  | is_upper | is_lower | is_digit | is_plus | is_slash | is_equals; | 
|  | ret |= ~is_valid; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 | 
|  | // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the | 
|  | // number of bytes written, which will be less than three if the quad ended | 
|  | // with padding.  It returns one on success or zero on error. | 
|  | static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, | 
|  | const uint8_t *in) { | 
|  | const uint8_t a = base64_ascii_to_bin(in[0]); | 
|  | const uint8_t b = base64_ascii_to_bin(in[1]); | 
|  | const uint8_t c = base64_ascii_to_bin(in[2]); | 
|  | const uint8_t d = base64_ascii_to_bin(in[3]); | 
|  | if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | | 
|  | ((uint32_t)c) << 6 | (uint32_t)d; | 
|  |  | 
|  | const unsigned padding_pattern = (in[0] == '=') << 3 | | 
|  | (in[1] == '=') << 2 | | 
|  | (in[2] == '=') << 1 | | 
|  | (in[3] == '='); | 
|  |  | 
|  | switch (padding_pattern) { | 
|  | case 0: | 
|  | // The common case of no padding. | 
|  | *out_num_bytes = 3; | 
|  | out[0] = v >> 16; | 
|  | out[1] = v >> 8; | 
|  | out[2] = v; | 
|  | break; | 
|  |  | 
|  | case 1:  // xxx= | 
|  | *out_num_bytes = 2; | 
|  | out[0] = v >> 16; | 
|  | out[1] = v >> 8; | 
|  | break; | 
|  |  | 
|  | case 3:  // xx== | 
|  | *out_num_bytes = 1; | 
|  | out[0] = v >> 16; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | *out_len = 0; | 
|  |  | 
|  | if (ctx->error_encountered) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | size_t bytes_out = 0, i; | 
|  | for (i = 0; i < in_len; i++) { | 
|  | const char c = in[i]; | 
|  | switch (c) { | 
|  | case ' ': | 
|  | case '\t': | 
|  | case '\r': | 
|  | case '\n': | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ctx->eof_seen) { | 
|  | ctx->error_encountered = 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ctx->data[ctx->data_used++] = c; | 
|  | if (ctx->data_used == 4) { | 
|  | size_t num_bytes_resulting; | 
|  | if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { | 
|  | ctx->error_encountered = 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ctx->data_used = 0; | 
|  | bytes_out += num_bytes_resulting; | 
|  | out += num_bytes_resulting; | 
|  |  | 
|  | if (num_bytes_resulting < 3) { | 
|  | ctx->eof_seen = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bytes_out > INT_MAX) { | 
|  | ctx->error_encountered = 1; | 
|  | *out_len = 0; | 
|  | return -1; | 
|  | } | 
|  | *out_len = (int)bytes_out; | 
|  |  | 
|  | if (ctx->eof_seen) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { | 
|  | *out_len = 0; | 
|  | if (ctx->error_encountered || ctx->data_used != 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | *out_len = 0; | 
|  |  | 
|  | if (in_len % 4 != 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t max_len; | 
|  | if (!EVP_DecodedLength(&max_len, in_len) || | 
|  | max_out < max_len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t i, bytes_out = 0; | 
|  | for (i = 0; i < in_len; i += 4) { | 
|  | size_t num_bytes_resulting; | 
|  |  | 
|  | if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bytes_out += num_bytes_resulting; | 
|  | out += num_bytes_resulting; | 
|  | if (num_bytes_resulting != 3 && i != in_len - 4) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_len = bytes_out; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { | 
|  | // Trim spaces and tabs from the beginning of the input. | 
|  | while (src_len > 0) { | 
|  | if (src[0] != ' ' && src[0] != '\t') { | 
|  | break; | 
|  | } | 
|  |  | 
|  | src++; | 
|  | src_len--; | 
|  | } | 
|  |  | 
|  | // Trim newlines, spaces and tabs from the end of the line. | 
|  | while (src_len > 0) { | 
|  | switch (src[src_len-1]) { | 
|  | case ' ': | 
|  | case '\t': | 
|  | case '\r': | 
|  | case '\n': | 
|  | src_len--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | size_t dst_len; | 
|  | if (!EVP_DecodedLength(&dst_len, src_len) || | 
|  | dst_len > INT_MAX || | 
|  | !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // EVP_DecodeBlock does not take padding into account, so put the | 
|  | // NULs back in... so the caller can strip them back out. | 
|  | while (dst_len % 3 != 0) { | 
|  | dst[dst_len++] = '\0'; | 
|  | } | 
|  | assert(dst_len <= INT_MAX); | 
|  |  | 
|  | return (int)dst_len; | 
|  | } |