|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/obj.h> | 
|  |  | 
|  | #include <inttypes.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/asn1.h> | 
|  | #include <openssl/buf.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/lhash.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/thread.h> | 
|  |  | 
|  | #include "obj_dat.h" | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | DEFINE_LHASH_OF(ASN1_OBJECT) | 
|  |  | 
|  | static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT; | 
|  | // These globals are protected by |global_added_lock|. | 
|  | static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL; | 
|  | static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL; | 
|  | static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL; | 
|  | static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL; | 
|  |  | 
|  | static struct CRYPTO_STATIC_MUTEX global_next_nid_lock = | 
|  | CRYPTO_STATIC_MUTEX_INIT; | 
|  | static unsigned global_next_nid = NUM_NID; | 
|  |  | 
|  | static int obj_next_nid(void) { | 
|  | int ret; | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock); | 
|  | ret = global_next_nid++; | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) { | 
|  | ASN1_OBJECT *r; | 
|  | unsigned char *data = NULL; | 
|  | char *sn = NULL, *ln = NULL; | 
|  |  | 
|  | if (o == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) { | 
|  | // TODO(fork): this is a little dangerous. | 
|  | return (ASN1_OBJECT *)o; | 
|  | } | 
|  |  | 
|  | r = ASN1_OBJECT_new(); | 
|  | if (r == NULL) { | 
|  | OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB); | 
|  | return NULL; | 
|  | } | 
|  | r->ln = r->sn = NULL; | 
|  |  | 
|  | data = OPENSSL_malloc(o->length); | 
|  | if (data == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (o->data != NULL) { | 
|  | OPENSSL_memcpy(data, o->data, o->length); | 
|  | } | 
|  |  | 
|  | // once data is attached to an object, it remains const | 
|  | r->data = data; | 
|  | r->length = o->length; | 
|  | r->nid = o->nid; | 
|  |  | 
|  | if (o->ln != NULL) { | 
|  | ln = OPENSSL_strdup(o->ln); | 
|  | if (ln == NULL) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (o->sn != NULL) { | 
|  | sn = OPENSSL_strdup(o->sn); | 
|  | if (sn == NULL) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | r->sn = sn; | 
|  | r->ln = ln; | 
|  |  | 
|  | r->flags = | 
|  | o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | | 
|  | ASN1_OBJECT_FLAG_DYNAMIC_DATA); | 
|  | return r; | 
|  |  | 
|  | err: | 
|  | OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE); | 
|  | OPENSSL_free(ln); | 
|  | OPENSSL_free(sn); | 
|  | OPENSSL_free(data); | 
|  | OPENSSL_free(r); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { | 
|  | int ret; | 
|  |  | 
|  | ret = a->length - b->length; | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | return OPENSSL_memcmp(a->data, b->data, a->length); | 
|  | } | 
|  |  | 
|  | const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) { | 
|  | if (obj == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return obj->data; | 
|  | } | 
|  |  | 
|  | size_t OBJ_length(const ASN1_OBJECT *obj) { | 
|  | if (obj == NULL || obj->length < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return (size_t)obj->length; | 
|  | } | 
|  |  | 
|  | // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is | 
|  | // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an | 
|  | // unsigned int in the array. | 
|  | static int obj_cmp(const void *key, const void *element) { | 
|  | unsigned nid = *((const unsigned*) element); | 
|  | const ASN1_OBJECT *a = key; | 
|  | const ASN1_OBJECT *b = &kObjects[nid]; | 
|  |  | 
|  | if (a->length < b->length) { | 
|  | return -1; | 
|  | } else if (a->length > b->length) { | 
|  | return 1; | 
|  | } | 
|  | return OPENSSL_memcmp(a->data, b->data, a->length); | 
|  | } | 
|  |  | 
|  | int OBJ_obj2nid(const ASN1_OBJECT *obj) { | 
|  | const unsigned int *nid_ptr; | 
|  |  | 
|  | if (obj == NULL) { | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | if (obj->nid != 0) { | 
|  | return obj->nid; | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); | 
|  | if (global_added_by_data != NULL) { | 
|  | ASN1_OBJECT *match; | 
|  |  | 
|  | match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj); | 
|  | if (match != NULL) { | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  | return match->nid; | 
|  | } | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  |  | 
|  | nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder), | 
|  | sizeof(kNIDsInOIDOrder[0]), obj_cmp); | 
|  | if (nid_ptr == NULL) { | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | return kObjects[*nid_ptr].nid; | 
|  | } | 
|  |  | 
|  | int OBJ_cbs2nid(const CBS *cbs) { | 
|  | if (CBS_len(cbs) > INT_MAX) { | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | ASN1_OBJECT obj; | 
|  | OPENSSL_memset(&obj, 0, sizeof(obj)); | 
|  | obj.data = CBS_data(cbs); | 
|  | obj.length = (int)CBS_len(cbs); | 
|  |  | 
|  | return OBJ_obj2nid(&obj); | 
|  | } | 
|  |  | 
|  | // short_name_cmp is called to search the kNIDsInShortNameOrder array. The | 
|  | // |key| argument is name that we're looking for and |element| is a pointer to | 
|  | // an unsigned int in the array. | 
|  | static int short_name_cmp(const void *key, const void *element) { | 
|  | const char *name = (const char *) key; | 
|  | unsigned nid = *((unsigned*) element); | 
|  |  | 
|  | return strcmp(name, kObjects[nid].sn); | 
|  | } | 
|  |  | 
|  | int OBJ_sn2nid(const char *short_name) { | 
|  | const unsigned int *nid_ptr; | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); | 
|  | if (global_added_by_short_name != NULL) { | 
|  | ASN1_OBJECT *match, template; | 
|  |  | 
|  | template.sn = short_name; | 
|  | match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template); | 
|  | if (match != NULL) { | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  | return match->nid; | 
|  | } | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  |  | 
|  | nid_ptr = bsearch(short_name, kNIDsInShortNameOrder, | 
|  | OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder), | 
|  | sizeof(kNIDsInShortNameOrder[0]), short_name_cmp); | 
|  | if (nid_ptr == NULL) { | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | return kObjects[*nid_ptr].nid; | 
|  | } | 
|  |  | 
|  | // long_name_cmp is called to search the kNIDsInLongNameOrder array. The | 
|  | // |key| argument is name that we're looking for and |element| is a pointer to | 
|  | // an unsigned int in the array. | 
|  | static int long_name_cmp(const void *key, const void *element) { | 
|  | const char *name = (const char *) key; | 
|  | unsigned nid = *((unsigned*) element); | 
|  |  | 
|  | return strcmp(name, kObjects[nid].ln); | 
|  | } | 
|  |  | 
|  | int OBJ_ln2nid(const char *long_name) { | 
|  | const unsigned int *nid_ptr; | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); | 
|  | if (global_added_by_long_name != NULL) { | 
|  | ASN1_OBJECT *match, template; | 
|  |  | 
|  | template.ln = long_name; | 
|  | match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template); | 
|  | if (match != NULL) { | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  | return match->nid; | 
|  | } | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  |  | 
|  | nid_ptr = bsearch(long_name, kNIDsInLongNameOrder, | 
|  | OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder), | 
|  | sizeof(kNIDsInLongNameOrder[0]), long_name_cmp); | 
|  | if (nid_ptr == NULL) { | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | return kObjects[*nid_ptr].nid; | 
|  | } | 
|  |  | 
|  | int OBJ_txt2nid(const char *s) { | 
|  | ASN1_OBJECT *obj; | 
|  | int nid; | 
|  |  | 
|  | obj = OBJ_txt2obj(s, 0 /* search names */); | 
|  | nid = OBJ_obj2nid(obj); | 
|  | ASN1_OBJECT_free(obj); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) { | 
|  | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); | 
|  | CBB oid; | 
|  |  | 
|  | if (obj == NULL || | 
|  | !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) || | 
|  | !CBB_add_bytes(&oid, obj->data, obj->length) || | 
|  | !CBB_flush(out)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const ASN1_OBJECT *OBJ_nid2obj(int nid) { | 
|  | if (nid >= 0 && nid < NUM_NID) { | 
|  | if (nid != NID_undef && kObjects[nid].nid == NID_undef) { | 
|  | goto err; | 
|  | } | 
|  | return &kObjects[nid]; | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock); | 
|  | if (global_added_by_nid != NULL) { | 
|  | ASN1_OBJECT *match, template; | 
|  |  | 
|  | template.nid = nid; | 
|  | match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template); | 
|  | if (match != NULL) { | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  | return match; | 
|  | } | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock); | 
|  |  | 
|  | err: | 
|  | OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const char *OBJ_nid2sn(int nid) { | 
|  | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); | 
|  | if (obj == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return obj->sn; | 
|  | } | 
|  |  | 
|  | const char *OBJ_nid2ln(int nid) { | 
|  | const ASN1_OBJECT *obj = OBJ_nid2obj(nid); | 
|  | if (obj == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return obj->ln; | 
|  | } | 
|  |  | 
|  | static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void), | 
|  | const char *oid, | 
|  | const char *short_name, | 
|  | const char *long_name) { | 
|  | uint8_t *buf; | 
|  | size_t len; | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 32) || | 
|  | !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) || | 
|  | !CBB_finish(&cbb, &buf, &len)) { | 
|  | OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING); | 
|  | CBB_cleanup(&cbb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf, | 
|  | len, short_name, long_name); | 
|  | OPENSSL_free(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) { | 
|  | if (!dont_search_names) { | 
|  | int nid = OBJ_sn2nid(s); | 
|  | if (nid == NID_undef) { | 
|  | nid = OBJ_ln2nid(s); | 
|  | } | 
|  |  | 
|  | if (nid != NID_undef) { | 
|  | return (ASN1_OBJECT*) OBJ_nid2obj(nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | return create_object_with_text_oid(NULL, s, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static int strlcpy_int(char *dst, const char *src, int dst_size) { | 
|  | size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size); | 
|  | if (ret > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | return (int)ret; | 
|  | } | 
|  |  | 
|  | int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj, | 
|  | int always_return_oid) { | 
|  | // Python depends on the empty OID successfully encoding as the empty | 
|  | // string. | 
|  | if (obj == NULL || obj->length == 0) { | 
|  | return strlcpy_int(out, "", out_len); | 
|  | } | 
|  |  | 
|  | if (!always_return_oid) { | 
|  | int nid = OBJ_obj2nid(obj); | 
|  | if (nid != NID_undef) { | 
|  | const char *name = OBJ_nid2ln(nid); | 
|  | if (name == NULL) { | 
|  | name = OBJ_nid2sn(nid); | 
|  | } | 
|  | if (name != NULL) { | 
|  | return strlcpy_int(out, name, out_len); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, obj->data, obj->length); | 
|  | char *txt = CBS_asn1_oid_to_text(&cbs); | 
|  | if (txt == NULL) { | 
|  | if (out_len > 0) { | 
|  | out[0] = '\0'; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int ret = strlcpy_int(out, txt, out_len); | 
|  | OPENSSL_free(txt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t hash_nid(const ASN1_OBJECT *obj) { | 
|  | return obj->nid; | 
|  | } | 
|  |  | 
|  | static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { | 
|  | return a->nid - b->nid; | 
|  | } | 
|  |  | 
|  | static uint32_t hash_data(const ASN1_OBJECT *obj) { | 
|  | return OPENSSL_hash32(obj->data, obj->length); | 
|  | } | 
|  |  | 
|  | static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { | 
|  | int i = a->length - b->length; | 
|  | if (i) { | 
|  | return i; | 
|  | } | 
|  | return OPENSSL_memcmp(a->data, b->data, a->length); | 
|  | } | 
|  |  | 
|  | static uint32_t hash_short_name(const ASN1_OBJECT *obj) { | 
|  | return lh_strhash(obj->sn); | 
|  | } | 
|  |  | 
|  | static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { | 
|  | return strcmp(a->sn, b->sn); | 
|  | } | 
|  |  | 
|  | static uint32_t hash_long_name(const ASN1_OBJECT *obj) { | 
|  | return lh_strhash(obj->ln); | 
|  | } | 
|  |  | 
|  | static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) { | 
|  | return strcmp(a->ln, b->ln); | 
|  | } | 
|  |  | 
|  | // obj_add_object inserts |obj| into the various global hashes for run-time | 
|  | // added objects. It returns one on success or zero otherwise. | 
|  | static int obj_add_object(ASN1_OBJECT *obj) { | 
|  | int ok; | 
|  | ASN1_OBJECT *old_object; | 
|  |  | 
|  | obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS | | 
|  | ASN1_OBJECT_FLAG_DYNAMIC_DATA); | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock); | 
|  | if (global_added_by_nid == NULL) { | 
|  | global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid); | 
|  | global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data); | 
|  | global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name); | 
|  | global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name); | 
|  | } | 
|  |  | 
|  | // We don't pay attention to |old_object| (which contains any previous object | 
|  | // that was evicted from the hashes) because we don't have a reference count | 
|  | // on ASN1_OBJECT values. Also, we should never have duplicates nids and so | 
|  | // should always have objects in |global_added_by_nid|. | 
|  |  | 
|  | ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj); | 
|  | if (obj->length != 0 && obj->data != NULL) { | 
|  | ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj); | 
|  | } | 
|  | if (obj->sn != NULL) { | 
|  | ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj); | 
|  | } | 
|  | if (obj->ln != NULL) { | 
|  | ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj); | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock); | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int OBJ_create(const char *oid, const char *short_name, const char *long_name) { | 
|  | ASN1_OBJECT *op = | 
|  | create_object_with_text_oid(obj_next_nid, oid, short_name, long_name); | 
|  | if (op == NULL || | 
|  | !obj_add_object(op)) { | 
|  | return NID_undef; | 
|  | } | 
|  | return op->nid; | 
|  | } | 
|  |  | 
|  | void OBJ_cleanup(void) {} |