|  | // Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "../bcm_interface.h" | 
|  | #include "../service_indicator/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // The 32-bit hash algorithms share a common byte-order neutral collector and | 
|  | // padding function implementations that operate on unaligned data, | 
|  | // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of | 
|  | // this writing, so there is no need for a common collector/padding | 
|  | // implementation yet. | 
|  |  | 
|  | static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha); | 
|  |  | 
|  | bcm_infallible BCM_sha384_init(SHA512_CTX *sha) { | 
|  | sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8); | 
|  | sha->h[1] = UINT64_C(0x629a292a367cd507); | 
|  | sha->h[2] = UINT64_C(0x9159015a3070dd17); | 
|  | sha->h[3] = UINT64_C(0x152fecd8f70e5939); | 
|  | sha->h[4] = UINT64_C(0x67332667ffc00b31); | 
|  | sha->h[5] = UINT64_C(0x8eb44a8768581511); | 
|  | sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7); | 
|  | sha->h[7] = UINT64_C(0x47b5481dbefa4fa4); | 
|  |  | 
|  | sha->bytes_so_far_low = 0; | 
|  | sha->bytes_so_far_high = 0; | 
|  | sha->num = 0; | 
|  | sha->md_len = BCM_SHA384_DIGEST_LENGTH; | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  |  | 
|  | bcm_infallible BCM_sha512_init(SHA512_CTX *sha) { | 
|  | sha->h[0] = UINT64_C(0x6a09e667f3bcc908); | 
|  | sha->h[1] = UINT64_C(0xbb67ae8584caa73b); | 
|  | sha->h[2] = UINT64_C(0x3c6ef372fe94f82b); | 
|  | sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1); | 
|  | sha->h[4] = UINT64_C(0x510e527fade682d1); | 
|  | sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f); | 
|  | sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b); | 
|  | sha->h[7] = UINT64_C(0x5be0cd19137e2179); | 
|  |  | 
|  | sha->bytes_so_far_low = 0; | 
|  | sha->bytes_so_far_high = 0; | 
|  | sha->num = 0; | 
|  | sha->md_len = BCM_SHA512_DIGEST_LENGTH; | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha) { | 
|  | sha->h[0] = UINT64_C(0x22312194fc2bf72c); | 
|  | sha->h[1] = UINT64_C(0x9f555fa3c84c64c2); | 
|  | sha->h[2] = UINT64_C(0x2393b86b6f53b151); | 
|  | sha->h[3] = UINT64_C(0x963877195940eabd); | 
|  | sha->h[4] = UINT64_C(0x96283ee2a88effe3); | 
|  | sha->h[5] = UINT64_C(0xbe5e1e2553863992); | 
|  | sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa); | 
|  | sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2); | 
|  |  | 
|  | sha->bytes_so_far_low = 0; | 
|  | sha->bytes_so_far_high = 0; | 
|  | sha->num = 0; | 
|  | sha->md_len = BCM_SHA512_256_DIGEST_LENGTH; | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | #if !defined(SHA512_ASM) | 
|  | static void sha512_block_data_order(uint64_t state[8], const uint8_t *in, | 
|  | size_t num_blocks); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | bcm_infallible BCM_sha384_final(uint8_t out[BCM_SHA384_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha) { | 
|  | // This function must be paired with |BCM_sha384_init|, which sets | 
|  | // |sha->md_len| to |BCM_SHA384_DIGEST_LENGTH|. | 
|  | assert(sha->md_len == BCM_SHA384_DIGEST_LENGTH); | 
|  | sha512_final_impl(out, BCM_SHA384_DIGEST_LENGTH, sha); | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data, | 
|  | size_t len) { | 
|  | return BCM_sha512_update(sha, data, len); | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data, | 
|  | size_t len) { | 
|  | return BCM_sha512_update(sha, data, len); | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_256_final(uint8_t out[BCM_SHA512_256_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha) { | 
|  | // This function must be paired with |BCM_sha512_256_init|, which sets | 
|  | // |sha->md_len| to |BCM_SHA512_256_DIGEST_LENGTH|. | 
|  | assert(sha->md_len == BCM_SHA512_256_DIGEST_LENGTH); | 
|  | sha512_final_impl(out, BCM_SHA512_256_DIGEST_LENGTH, sha); | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_transform(SHA512_CTX *c, | 
|  | const uint8_t block[SHA512_CBLOCK]) { | 
|  | sha512_block_data_order(c->h, block, 1); | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_update(SHA512_CTX *c, const void *in_data, | 
|  | size_t len) { | 
|  | uint8_t *p = c->p; | 
|  | const uint8_t *data = reinterpret_cast<const uint8_t *>(in_data); | 
|  |  | 
|  | if (len == 0) { | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | c->bytes_so_far_low += len; | 
|  | if (c->bytes_so_far_low < len) { | 
|  | c->bytes_so_far_high++; | 
|  | } | 
|  |  | 
|  | if (c->num != 0) { | 
|  | size_t n = sizeof(c->p) - c->num; | 
|  |  | 
|  | if (len < n) { | 
|  | OPENSSL_memcpy(p + c->num, data, len); | 
|  | c->num += (unsigned int)len; | 
|  | return bcm_infallible::approved; | 
|  | } else { | 
|  | OPENSSL_memcpy(p + c->num, data, n), c->num = 0; | 
|  | len -= n; | 
|  | data += n; | 
|  | sha512_block_data_order(c->h, p, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len >= sizeof(c->p)) { | 
|  | sha512_block_data_order(c->h, data, len / sizeof(c->p)); | 
|  | data += len; | 
|  | len %= sizeof(c->p); | 
|  | data -= len; | 
|  | } | 
|  |  | 
|  | if (len != 0) { | 
|  | OPENSSL_memcpy(p, data, len); | 
|  | c->num = (int)len; | 
|  | } | 
|  |  | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | bcm_infallible BCM_sha512_final(uint8_t out[BCM_SHA512_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha) { | 
|  | // Ideally we would assert |sha->md_len| is |BCM_SHA512_DIGEST_LENGTH| to | 
|  | // match the size hint, but calling code often pairs |BCM_sha384_init| with | 
|  | // |BCM_sha512_final| and expects |sha->md_len| to carry the size over. | 
|  | // | 
|  | // TODO(davidben): Add an assert and fix code to match them up. | 
|  | sha512_final_impl(out, sha->md_len, sha); | 
|  | return bcm_infallible::approved; | 
|  | } | 
|  |  | 
|  | static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) { | 
|  | uint8_t *p = sha->p; | 
|  | size_t n = sha->num; | 
|  |  | 
|  | p[n] = 0x80;  // There always is a room for one | 
|  | n++; | 
|  | if (n > (sizeof(sha->p) - 16)) { | 
|  | OPENSSL_memset(p + n, 0, sizeof(sha->p) - n); | 
|  | n = 0; | 
|  | sha512_block_data_order(sha->h, p, 1); | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n); | 
|  | const uint64_t Nh = (uint64_t{sha->bytes_so_far_high} << 3) | | 
|  | (sha->bytes_so_far_low >> (64 - 3)); | 
|  | const uint64_t Nl = sha->bytes_so_far_low << 3; | 
|  | CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, Nh); | 
|  | CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, Nl); | 
|  |  | 
|  | sha512_block_data_order(sha->h, p, 1); | 
|  |  | 
|  | assert(md_len % 8 == 0); | 
|  | const size_t out_words = md_len / 8; | 
|  | for (size_t i = 0; i < out_words; i++) { | 
|  | CRYPTO_store_u64_be(out, sha->h[i]); | 
|  | out += 8; | 
|  | } | 
|  |  | 
|  | FIPS_service_indicator_update_state(); | 
|  | } | 
|  |  | 
|  | #if !defined(SHA512_ASM) | 
|  |  | 
|  | #if !defined(SHA512_ASM_NOHW) | 
|  | static const uint64_t K512[80] = { | 
|  | UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), | 
|  | UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), | 
|  | UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), | 
|  | UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), | 
|  | UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), | 
|  | UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), | 
|  | UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), | 
|  | UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), | 
|  | UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), | 
|  | UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), | 
|  | UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), | 
|  | UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), | 
|  | UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), | 
|  | UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), | 
|  | UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), | 
|  | UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), | 
|  | UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), | 
|  | UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), | 
|  | UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), | 
|  | UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), | 
|  | UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), | 
|  | UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), | 
|  | UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), | 
|  | UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), | 
|  | UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), | 
|  | UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), | 
|  | UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), | 
|  | UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), | 
|  | UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), | 
|  | UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), | 
|  | UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), | 
|  | UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), | 
|  | UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), | 
|  | UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), | 
|  | UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), | 
|  | UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), | 
|  | UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), | 
|  | UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), | 
|  | UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), | 
|  | UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817), | 
|  | }; | 
|  |  | 
|  | #define Sigma0(x)                                        \ | 
|  | (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \ | 
|  | CRYPTO_rotr_u64((x), 39)) | 
|  | #define Sigma1(x)                                        \ | 
|  | (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \ | 
|  | CRYPTO_rotr_u64((x), 41)) | 
|  | #define sigma0(x) \ | 
|  | (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7)) | 
|  | #define sigma1(x) \ | 
|  | (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6)) | 
|  |  | 
|  | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) | 
|  | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | 
|  |  | 
|  |  | 
|  | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | // This code should give better results on 32-bit CPU with less than | 
|  | // ~24 registers, both size and performance wise... | 
|  | static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in, | 
|  | size_t num) { | 
|  | uint64_t A, E, T; | 
|  | uint64_t X[9 + 80], *F; | 
|  | int i; | 
|  |  | 
|  | while (num--) { | 
|  | F = X + 80; | 
|  | A = state[0]; | 
|  | F[1] = state[1]; | 
|  | F[2] = state[2]; | 
|  | F[3] = state[3]; | 
|  | E = state[4]; | 
|  | F[5] = state[5]; | 
|  | F[6] = state[6]; | 
|  | F[7] = state[7]; | 
|  |  | 
|  | for (i = 0; i < 16; i++, F--) { | 
|  | T = CRYPTO_load_u64_be(in + i * 8); | 
|  | F[0] = A; | 
|  | F[4] = E; | 
|  | F[8] = T; | 
|  | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; | 
|  | E = F[3] + T; | 
|  | A = T + Sigma0(A) + Maj(A, F[1], F[2]); | 
|  | } | 
|  |  | 
|  | for (; i < 80; i++, F--) { | 
|  | T = sigma0(F[8 + 16 - 1]); | 
|  | T += sigma1(F[8 + 16 - 14]); | 
|  | T += F[8 + 16] + F[8 + 16 - 9]; | 
|  |  | 
|  | F[0] = A; | 
|  | F[4] = E; | 
|  | F[8] = T; | 
|  | T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; | 
|  | E = F[3] + T; | 
|  | A = T + Sigma0(A) + Maj(A, F[1], F[2]); | 
|  | } | 
|  |  | 
|  | state[0] += A; | 
|  | state[1] += F[1]; | 
|  | state[2] += F[2]; | 
|  | state[3] += F[3]; | 
|  | state[4] += E; | 
|  | state[5] += F[5]; | 
|  | state[6] += F[6]; | 
|  | state[7] += F[7]; | 
|  |  | 
|  | in += 16 * 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \ | 
|  | do {                                           \ | 
|  | T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \ | 
|  | h = Sigma0(a) + Maj(a, b, c);                \ | 
|  | d += T1;                                     \ | 
|  | h += T1;                                     \ | 
|  | } while (0) | 
|  |  | 
|  | #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \ | 
|  | do {                                                 \ | 
|  | s0 = X[(j + 1) & 0x0f];                            \ | 
|  | s0 = sigma0(s0);                                   \ | 
|  | s1 = X[(j + 14) & 0x0f];                           \ | 
|  | s1 = sigma1(s1);                                   \ | 
|  | T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \ | 
|  | ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \ | 
|  | } while (0) | 
|  |  | 
|  | static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in, | 
|  | size_t num) { | 
|  | uint64_t a, b, c, d, e, f, g, h, s0, s1, T1; | 
|  | uint64_t X[16]; | 
|  | int i; | 
|  |  | 
|  | while (num--) { | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  | e = state[4]; | 
|  | f = state[5]; | 
|  | g = state[6]; | 
|  | h = state[7]; | 
|  |  | 
|  | T1 = X[0] = CRYPTO_load_u64_be(in); | 
|  | ROUND_00_15(0, a, b, c, d, e, f, g, h); | 
|  | T1 = X[1] = CRYPTO_load_u64_be(in + 8); | 
|  | ROUND_00_15(1, h, a, b, c, d, e, f, g); | 
|  | T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8); | 
|  | ROUND_00_15(2, g, h, a, b, c, d, e, f); | 
|  | T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8); | 
|  | ROUND_00_15(3, f, g, h, a, b, c, d, e); | 
|  | T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8); | 
|  | ROUND_00_15(4, e, f, g, h, a, b, c, d); | 
|  | T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8); | 
|  | ROUND_00_15(5, d, e, f, g, h, a, b, c); | 
|  | T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8); | 
|  | ROUND_00_15(6, c, d, e, f, g, h, a, b); | 
|  | T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8); | 
|  | ROUND_00_15(7, b, c, d, e, f, g, h, a); | 
|  | T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8); | 
|  | ROUND_00_15(8, a, b, c, d, e, f, g, h); | 
|  | T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8); | 
|  | ROUND_00_15(9, h, a, b, c, d, e, f, g); | 
|  | T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8); | 
|  | ROUND_00_15(10, g, h, a, b, c, d, e, f); | 
|  | T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8); | 
|  | ROUND_00_15(11, f, g, h, a, b, c, d, e); | 
|  | T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8); | 
|  | ROUND_00_15(12, e, f, g, h, a, b, c, d); | 
|  | T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8); | 
|  | ROUND_00_15(13, d, e, f, g, h, a, b, c); | 
|  | T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8); | 
|  | ROUND_00_15(14, c, d, e, f, g, h, a, b); | 
|  | T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8); | 
|  | ROUND_00_15(15, b, c, d, e, f, g, h, a); | 
|  |  | 
|  | for (i = 16; i < 80; i += 16) { | 
|  | ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); | 
|  | ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); | 
|  | ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); | 
|  | ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); | 
|  | ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); | 
|  | ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); | 
|  | ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); | 
|  | ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); | 
|  | ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); | 
|  | ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); | 
|  | ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); | 
|  | ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); | 
|  | ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); | 
|  | ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); | 
|  | ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); | 
|  | ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); | 
|  | } | 
|  |  | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | state[4] += e; | 
|  | state[5] += f; | 
|  | state[6] += g; | 
|  | state[7] += h; | 
|  |  | 
|  | in += 16 * 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #endif  // !SHA512_ASM_NOHW | 
|  |  | 
|  | static void sha512_block_data_order(uint64_t state[8], const uint8_t *data, | 
|  | size_t num) { | 
|  | #if defined(SHA512_ASM_HW) | 
|  | if (sha512_hw_capable()) { | 
|  | sha512_block_data_order_hw(state, data, num); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | #if defined(SHA512_ASM_AVX) | 
|  | if (sha512_avx_capable()) { | 
|  | sha512_block_data_order_avx(state, data, num); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | #if defined(SHA512_ASM_SSSE3) | 
|  | if (sha512_ssse3_capable()) { | 
|  | sha512_block_data_order_ssse3(state, data, num); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | #if defined(SHA512_ASM_NEON) | 
|  | if (CRYPTO_is_NEON_capable()) { | 
|  | sha512_block_data_order_neon(state, data, num); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | sha512_block_data_order_nohw(state, data, num); | 
|  | } | 
|  |  | 
|  | #endif  // !SHA512_ASM | 
|  |  | 
|  | #undef Sigma0 | 
|  | #undef Sigma1 | 
|  | #undef sigma0 | 
|  | #undef sigma1 | 
|  | #undef Ch | 
|  | #undef Maj | 
|  | #undef ROUND_00_15 | 
|  | #undef ROUND_16_80 |