|  | /* Copyright 2016 Brian Smith. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../../internal.h" | 
|  |  | 
|  |  | 
|  | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n); | 
|  |  | 
|  | static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, | 
|  | "BN_MONT_CTX_N0_LIMBS value is invalid"); | 
|  | static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t), | 
|  | "uint64_t is insufficient precision for n0"); | 
|  |  | 
|  | // LG_LITTLE_R is log_2(r). | 
|  | #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2) | 
|  |  | 
|  | uint64_t bn_mont_n0(const BIGNUM *n) { | 
|  | // These conditions are checked by the caller, |BN_MONT_CTX_set| or | 
|  | // |BN_MONT_CTX_new_consttime|. | 
|  | assert(!BN_is_zero(n)); | 
|  | assert(!BN_is_negative(n)); | 
|  | assert(BN_is_odd(n)); | 
|  |  | 
|  | // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This | 
|  | // ensures that we can do integer division by |r| by simply ignoring | 
|  | // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo | 
|  | // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is | 
|  | // what makes Montgomery multiplication efficient. | 
|  | // | 
|  | // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography | 
|  | // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a | 
|  | // multi-limb Montgomery multiplication of |a * b (mod n)|, given the | 
|  | // unreduced product |t == a * b|, we repeatedly calculate: | 
|  | // | 
|  | //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph). | 
|  | //    t2 := t1*n0*n | 
|  | //    t3 := t + t2 | 
|  | //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|. | 
|  | // | 
|  | // In the last step, it would only make sense to ignore the lowest limb of | 
|  | // |t3| if it were zero. The middle steps ensure that this is the case: | 
|  | // | 
|  | //                            t3 ==  0 (mod r) | 
|  | //                        t + t2 ==  0 (mod r) | 
|  | //                   t + t1*n0*n ==  0 (mod r) | 
|  | //                       t1*n0*n == -t (mod r) | 
|  | //                        t*n0*n == -t (mod r) | 
|  | //                          n0*n == -1 (mod r) | 
|  | //                            n0 == -1/n (mod r) | 
|  | // | 
|  | // Thus, in each iteration of the loop, we multiply by the constant factor | 
|  | // |n0|, the negative inverse of n (mod r). | 
|  |  | 
|  | // n_mod_r = n % r. As explained above, this is done by taking the lowest | 
|  | // |BN_MONT_CTX_N0_LIMBS| limbs of |n|. | 
|  | uint64_t n_mod_r = n->d[0]; | 
|  | #if BN_MONT_CTX_N0_LIMBS == 2 | 
|  | if (n->width > 1) { | 
|  | n_mod_r |= (uint64_t)n->d[1] << BN_BITS2; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return bn_neg_inv_mod_r_u64(n_mod_r); | 
|  | } | 
|  |  | 
|  | // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v| | 
|  | // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n| | 
|  | // must be odd. | 
|  | // | 
|  | // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery | 
|  | // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf). | 
|  | // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and | 
|  | // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000" | 
|  | // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21). | 
|  | // | 
|  | // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion" | 
|  | // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is | 
|  | // constant-time with respect to |n|. We assume uint64_t additions, | 
|  | // subtractions, shifts, and bitwise operations are all constant time, which | 
|  | // may be a large leap of faith on 32-bit targets. We avoid division and | 
|  | // multiplication, which tend to be the most problematic in terms of timing | 
|  | // leaks. | 
|  | // | 
|  | // Most GCD implementations return values such that |u*r + v*n == 1|, so the | 
|  | // caller would have to negate the resultant |v| for the purpose of Montgomery | 
|  | // multiplication. This implementation does the negation implicitly by doing | 
|  | // the computations as a difference instead of a sum. | 
|  | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) { | 
|  | assert(n % 2 == 1); | 
|  |  | 
|  | // alpha == 2**(lg r - 1) == r / 2. | 
|  | static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1); | 
|  |  | 
|  | const uint64_t beta = n; | 
|  |  | 
|  | uint64_t u = 1; | 
|  | uint64_t v = 0; | 
|  |  | 
|  | // The invariant maintained from here on is: | 
|  | // 2**(lg r - i) == u*2*alpha - v*beta. | 
|  | for (size_t i = 0; i < LG_LITTLE_R; ++i) { | 
|  | #if BN_BITS2 == 64 && defined(BN_ULLONG) | 
|  | assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) == | 
|  | ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); | 
|  | #endif | 
|  |  | 
|  | // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set | 
|  | // |u = (u + beta) / 2| and |v = (v / 2) + alpha|. | 
|  |  | 
|  | uint64_t u_is_odd = UINT64_C(0) - (u & 1);  // Either 0xff..ff or 0. | 
|  |  | 
|  | // The addition can overflow, so use Dietz's method for it. | 
|  | // | 
|  | // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all | 
|  | // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values | 
|  | // (embedded in 64 bits to so that overflow can be ignored): | 
|  | // | 
|  | // (declare-fun x () (_ BitVec 64)) | 
|  | // (declare-fun y () (_ BitVec 64)) | 
|  | // (assert (let ( | 
|  | //    (one (_ bv1 64)) | 
|  | //    (thirtyTwo (_ bv32 64))) | 
|  | //    (and | 
|  | //      (bvult x (bvshl one thirtyTwo)) | 
|  | //      (bvult y (bvshl one thirtyTwo)) | 
|  | //      (not (= | 
|  | //        (bvadd (bvlshr (bvxor x y) one) (bvand x y)) | 
|  | //        (bvlshr (bvadd x y) one))) | 
|  | // ))) | 
|  | // (check-sat) | 
|  | uint64_t beta_if_u_is_odd = beta & u_is_odd;  // Either |beta| or 0. | 
|  | u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd); | 
|  |  | 
|  | uint64_t alpha_if_u_is_odd = alpha & u_is_odd;  // Either |alpha| or 0. | 
|  | v = (v >> 1) + alpha_if_u_is_odd; | 
|  | } | 
|  |  | 
|  | // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha. | 
|  | #if BN_BITS2 == 64 && defined(BN_ULLONG) | 
|  | declassify_assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); | 
|  | #endif | 
|  |  | 
|  | return v; | 
|  | } | 
|  |  | 
|  | int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) { | 
|  | assert(!BN_is_zero(&mont->N)); | 
|  | assert(!BN_is_negative(&mont->N)); | 
|  | assert(BN_is_odd(&mont->N)); | 
|  | assert(bn_minimal_width(&mont->N) == mont->N.width); | 
|  |  | 
|  | unsigned n_bits = BN_num_bits(&mont->N); | 
|  | assert(n_bits != 0); | 
|  | if (n_bits == 1) { | 
|  | BN_zero(&mont->RR); | 
|  | return bn_resize_words(&mont->RR, mont->N.width); | 
|  | } | 
|  |  | 
|  | unsigned lgBigR = mont->N.width * BN_BITS2; | 
|  | assert(lgBigR >= n_bits); | 
|  |  | 
|  | // RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the | 
|  | // Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery | 
|  | // square-and-multiply to exponentiate. | 
|  | // | 
|  | // The square steps take 2^n R to (2^n)*(2^n) R = 2^2n R. This is the same as | 
|  | // doubling 2^n R, n times (doubling any x, n times, computes 2^n * x). When n | 
|  | // is below some threshold, doubling is faster; when above, squaring is | 
|  | // faster. From benchmarking various 32-bit and 64-bit architectures, the word | 
|  | // count seems to work well as a threshold. (Doubling scales linearly and | 
|  | // Montgomery reduction scales quadratically, so the threshold should scale | 
|  | // roughly linearly.) | 
|  | // | 
|  | // The multiply steps take 2^n R to 2*2^n R = 2^(n+1) R. It is faster to | 
|  | // double the value instead, so the square-and-multiply exponentiation would | 
|  | // become square-and-double. However, when using the word count as the | 
|  | // threshold, it turns out that no multiply/double steps will be needed at | 
|  | // all, because squaring any x, i times, computes x^(2^i): | 
|  | // | 
|  | //   (2^threshold)^(2^BN_BITS2_LG) R | 
|  | //   (2^mont->N.width)^BN_BITS2 R | 
|  | // = 2^(mont->N.width*BN_BITS2) R | 
|  | // = 2^lgBigR R | 
|  | // = RR | 
|  | int threshold = mont->N.width; | 
|  |  | 
|  | // Calculate 2^threshold R = 2^(threshold + lgBigR) by doubling. The | 
|  | // first n_bits - 1 doubles can be skipped because we don't need to reduce. | 
|  | if (!BN_set_bit(&mont->RR, n_bits - 1) || | 
|  | !bn_mod_lshift_consttime(&mont->RR, &mont->RR, | 
|  | threshold + (lgBigR - (n_bits - 1)), | 
|  | &mont->N, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The above steps are the same regardless of the threshold. The steps below | 
|  | // need to be modified if the threshold changes. | 
|  | assert(threshold == mont->N.width); | 
|  | for (unsigned i = 0; i < BN_BITS2_LG; i++) { | 
|  | if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bn_resize_words(&mont->RR, mont->N.width); | 
|  | } |