| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <assert.h> | 
 | #include <errno.h> | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/base64.h> | 
 | #include <openssl/bio.h> | 
 | #include <openssl/buffer.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "../../crypto/internal.h" | 
 |  | 
 |  | 
 | #define B64_BLOCK_SIZE 1024 | 
 | #define B64_BLOCK_SIZE2 768 | 
 | #define B64_NONE 0 | 
 | #define B64_ENCODE 1 | 
 | #define B64_DECODE 2 | 
 | #define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80) | 
 |  | 
 | typedef struct b64_struct { | 
 |   int buf_len; | 
 |   int buf_off; | 
 |   int tmp_len;  // used to find the start when decoding | 
 |   int tmp_nl;   // If true, scan until '\n' | 
 |   int encode; | 
 |   int start;  // have we started decoding yet? | 
 |   int cont;   // <= 0 when finished | 
 |   EVP_ENCODE_CTX base64; | 
 |   char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; | 
 |   char tmp[B64_BLOCK_SIZE]; | 
 | } BIO_B64_CTX; | 
 |  | 
 | static int b64_new(BIO *bio) { | 
 |   BIO_B64_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); | 
 |   if (ctx == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ctx->cont = 1; | 
 |   ctx->start = 1; | 
 |  | 
 |   bio->init = 1; | 
 |   bio->ptr = (char *)ctx; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int b64_free(BIO *bio) { | 
 |   if (bio == NULL) { | 
 |     return 0; | 
 |   } | 
 |   OPENSSL_free(bio->ptr); | 
 |   bio->ptr = NULL; | 
 |   bio->init = 0; | 
 |   bio->flags = 0; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int b64_read(BIO *b, char *out, int outl) { | 
 |   int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; | 
 |   BIO_B64_CTX *ctx; | 
 |   uint8_t *p, *q; | 
 |  | 
 |   if (out == NULL) { | 
 |     return 0; | 
 |   } | 
 |   ctx = (BIO_B64_CTX *) b->ptr; | 
 |  | 
 |   if (ctx == NULL || b->next_bio == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BIO_clear_retry_flags(b); | 
 |  | 
 |   if (ctx->encode != B64_DECODE) { | 
 |     ctx->encode = B64_DECODE; | 
 |     ctx->buf_len = 0; | 
 |     ctx->buf_off = 0; | 
 |     ctx->tmp_len = 0; | 
 |     EVP_DecodeInit(&ctx->base64); | 
 |   } | 
 |  | 
 |   // First check if there are bytes decoded/encoded | 
 |   if (ctx->buf_len > 0) { | 
 |     assert(ctx->buf_len >= ctx->buf_off); | 
 |     i = ctx->buf_len - ctx->buf_off; | 
 |     if (i > outl) { | 
 |       i = outl; | 
 |     } | 
 |     assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); | 
 |     OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i); | 
 |     ret = i; | 
 |     out += i; | 
 |     outl -= i; | 
 |     ctx->buf_off += i; | 
 |     if (ctx->buf_len == ctx->buf_off) { | 
 |       ctx->buf_len = 0; | 
 |       ctx->buf_off = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // At this point, we have room of outl bytes and an empty buffer, so we | 
 |   // should read in some more. | 
 |  | 
 |   ret_code = 0; | 
 |   while (outl > 0) { | 
 |     if (ctx->cont <= 0) { | 
 |       break; | 
 |     } | 
 |  | 
 |     i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]), | 
 |                  B64_BLOCK_SIZE - ctx->tmp_len); | 
 |  | 
 |     if (i <= 0) { | 
 |       ret_code = i; | 
 |  | 
 |       // Should we continue next time we are called? | 
 |       if (!BIO_should_retry(b->next_bio)) { | 
 |         ctx->cont = i; | 
 |         // If buffer empty break | 
 |         if (ctx->tmp_len == 0) { | 
 |           break; | 
 |         } else { | 
 |           // Fall through and process what we have | 
 |           i = 0; | 
 |         } | 
 |       } else { | 
 |         // else we retry and add more data to buffer | 
 |         break; | 
 |       } | 
 |     } | 
 |     i += ctx->tmp_len; | 
 |     ctx->tmp_len = i; | 
 |  | 
 |     // We need to scan, a line at a time until we have a valid line if we are | 
 |     // starting. | 
 |     if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) { | 
 |       // ctx->start = 1; | 
 |       ctx->tmp_len = 0; | 
 |     } else if (ctx->start) { | 
 |       q = p = (uint8_t *)ctx->tmp; | 
 |       num = 0; | 
 |       for (j = 0; j < i; j++) { | 
 |         if (*(q++) != '\n') { | 
 |           continue; | 
 |         } | 
 |  | 
 |         // due to a previous very long line, we need to keep on scanning for a | 
 |         // '\n' before we even start looking for base64 encoded stuff. | 
 |         if (ctx->tmp_nl) { | 
 |           p = q; | 
 |           ctx->tmp_nl = 0; | 
 |           continue; | 
 |         } | 
 |  | 
 |         k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p, | 
 |                              q - p); | 
 |  | 
 |         if (k <= 0 && num == 0 && ctx->start) { | 
 |           EVP_DecodeInit(&ctx->base64); | 
 |         } else { | 
 |           if (p != (uint8_t *)&(ctx->tmp[0])) { | 
 |             i -= (p - (uint8_t *)&(ctx->tmp[0])); | 
 |             for (x = 0; x < i; x++) { | 
 |               ctx->tmp[x] = p[x]; | 
 |             } | 
 |           } | 
 |           EVP_DecodeInit(&ctx->base64); | 
 |           ctx->start = 0; | 
 |           break; | 
 |         } | 
 |         p = q; | 
 |       } | 
 |  | 
 |       // we fell off the end without starting | 
 |       if (j == i && num == 0) { | 
 |         // Is this is one long chunk?, if so, keep on reading until a new | 
 |         // line. | 
 |         if (p == (uint8_t *)&(ctx->tmp[0])) { | 
 |           // Check buffer full | 
 |           if (i == B64_BLOCK_SIZE) { | 
 |             ctx->tmp_nl = 1; | 
 |             ctx->tmp_len = 0; | 
 |           } | 
 |         } else if (p != q) {  // finished on a '\n' | 
 |           n = q - p; | 
 |           for (ii = 0; ii < n; ii++) { | 
 |             ctx->tmp[ii] = p[ii]; | 
 |           } | 
 |           ctx->tmp_len = n; | 
 |         } | 
 |         // else finished on a '\n' | 
 |         continue; | 
 |       } else { | 
 |         ctx->tmp_len = 0; | 
 |       } | 
 |     } else if (i < B64_BLOCK_SIZE && ctx->cont > 0) { | 
 |       // If buffer isn't full and we can retry then restart to read in more | 
 |       // data. | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { | 
 |       int z, jj; | 
 |  | 
 |       jj = i & ~3;  // process per 4 | 
 |       z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj); | 
 |       if (jj > 2) { | 
 |         if (ctx->tmp[jj - 1] == '=') { | 
 |           z--; | 
 |           if (ctx->tmp[jj - 2] == '=') { | 
 |             z--; | 
 |           } | 
 |         } | 
 |       } | 
 |       // z is now number of output bytes and jj is the number consumed. | 
 |       if (jj != i) { | 
 |         OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj); | 
 |         ctx->tmp_len = i - jj; | 
 |       } | 
 |       ctx->buf_len = 0; | 
 |       if (z > 0) { | 
 |         ctx->buf_len = z; | 
 |       } | 
 |       i = z; | 
 |     } else { | 
 |       i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, | 
 |                            &ctx->buf_len, (uint8_t *)ctx->tmp, i); | 
 |       ctx->tmp_len = 0; | 
 |     } | 
 |     ctx->buf_off = 0; | 
 |     if (i < 0) { | 
 |       ret_code = 0; | 
 |       ctx->buf_len = 0; | 
 |       break; | 
 |     } | 
 |  | 
 |     if (ctx->buf_len <= outl) { | 
 |       i = ctx->buf_len; | 
 |     } else { | 
 |       i = outl; | 
 |     } | 
 |  | 
 |     OPENSSL_memcpy(out, ctx->buf, i); | 
 |     ret += i; | 
 |     ctx->buf_off = i; | 
 |     if (ctx->buf_off == ctx->buf_len) { | 
 |       ctx->buf_len = 0; | 
 |       ctx->buf_off = 0; | 
 |     } | 
 |     outl -= i; | 
 |     out += i; | 
 |   } | 
 |  | 
 |   BIO_copy_next_retry(b); | 
 |   return ret == 0 ? ret_code : ret; | 
 | } | 
 |  | 
 | static int b64_write(BIO *b, const char *in, int inl) { | 
 |   int ret = 0, n, i; | 
 |   BIO_B64_CTX *ctx; | 
 |  | 
 |   ctx = (BIO_B64_CTX *)b->ptr; | 
 |   BIO_clear_retry_flags(b); | 
 |  | 
 |   if (ctx->encode != B64_ENCODE) { | 
 |     ctx->encode = B64_ENCODE; | 
 |     ctx->buf_len = 0; | 
 |     ctx->buf_off = 0; | 
 |     ctx->tmp_len = 0; | 
 |     EVP_EncodeInit(&(ctx->base64)); | 
 |   } | 
 |  | 
 |   assert(ctx->buf_off < (int)sizeof(ctx->buf)); | 
 |   assert(ctx->buf_len <= (int)sizeof(ctx->buf)); | 
 |   assert(ctx->buf_len >= ctx->buf_off); | 
 |  | 
 |   n = ctx->buf_len - ctx->buf_off; | 
 |   while (n > 0) { | 
 |     i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); | 
 |     if (i <= 0) { | 
 |       BIO_copy_next_retry(b); | 
 |       return i; | 
 |     } | 
 |     assert(i <= n); | 
 |     ctx->buf_off += i; | 
 |     assert(ctx->buf_off <= (int)sizeof(ctx->buf)); | 
 |     assert(ctx->buf_len >= ctx->buf_off); | 
 |     n -= i; | 
 |   } | 
 |  | 
 |   // at this point all pending data has been written. | 
 |   ctx->buf_off = 0; | 
 |   ctx->buf_len = 0; | 
 |  | 
 |   if (in == NULL || inl <= 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   while (inl > 0) { | 
 |     n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; | 
 |  | 
 |     if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { | 
 |       if (ctx->tmp_len > 0) { | 
 |         assert(ctx->tmp_len <= 3); | 
 |         n = 3 - ctx->tmp_len; | 
 |         // There's a theoretical possibility of this. | 
 |         if (n > inl) { | 
 |           n = inl; | 
 |         } | 
 |         OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); | 
 |         ctx->tmp_len += n; | 
 |         ret += n; | 
 |         if (ctx->tmp_len < 3) { | 
 |           break; | 
 |         } | 
 |         ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, | 
 |                                        ctx->tmp_len); | 
 |         assert(ctx->buf_len <= (int)sizeof(ctx->buf)); | 
 |         assert(ctx->buf_len >= ctx->buf_off); | 
 |  | 
 |         // Since we're now done using the temporary buffer, the length should | 
 |         // be zeroed. | 
 |         ctx->tmp_len = 0; | 
 |       } else { | 
 |         if (n < 3) { | 
 |           OPENSSL_memcpy(ctx->tmp, in, n); | 
 |           ctx->tmp_len = n; | 
 |           ret += n; | 
 |           break; | 
 |         } | 
 |         n -= n % 3; | 
 |         ctx->buf_len = | 
 |             EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n); | 
 |         assert(ctx->buf_len <= (int)sizeof(ctx->buf)); | 
 |         assert(ctx->buf_len >= ctx->buf_off); | 
 |         ret += n; | 
 |       } | 
 |     } else { | 
 |       EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len, | 
 |                        (uint8_t *)in, n); | 
 |       assert(ctx->buf_len <= (int)sizeof(ctx->buf)); | 
 |       assert(ctx->buf_len >= ctx->buf_off); | 
 |       ret += n; | 
 |     } | 
 |     inl -= n; | 
 |     in += n; | 
 |  | 
 |     ctx->buf_off = 0; | 
 |     n = ctx->buf_len; | 
 |  | 
 |     while (n > 0) { | 
 |       i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); | 
 |       if (i <= 0) { | 
 |         BIO_copy_next_retry(b); | 
 |         return ret == 0 ? i : ret; | 
 |       } | 
 |       assert(i <= n); | 
 |       n -= i; | 
 |       ctx->buf_off += i; | 
 |       assert(ctx->buf_off <= (int)sizeof(ctx->buf)); | 
 |       assert(ctx->buf_len >= ctx->buf_off); | 
 |     } | 
 |     ctx->buf_len = 0; | 
 |     ctx->buf_off = 0; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) { | 
 |   BIO_B64_CTX *ctx; | 
 |   long ret = 1; | 
 |   int i; | 
 |  | 
 |   ctx = (BIO_B64_CTX *)b->ptr; | 
 |  | 
 |   switch (cmd) { | 
 |     case BIO_CTRL_RESET: | 
 |       ctx->cont = 1; | 
 |       ctx->start = 1; | 
 |       ctx->encode = B64_NONE; | 
 |       ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       break; | 
 |  | 
 |     case BIO_CTRL_EOF:  // More to read | 
 |       if (ctx->cont <= 0) { | 
 |         ret = 1; | 
 |       } else { | 
 |         ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       } | 
 |       break; | 
 |  | 
 |     case BIO_CTRL_WPENDING:  // More to write in buffer | 
 |       assert(ctx->buf_len >= ctx->buf_off); | 
 |       ret = ctx->buf_len - ctx->buf_off; | 
 |       if ((ret == 0) && (ctx->encode != B64_NONE) && (ctx->base64.data_used != 0)) { | 
 |         ret = 1; | 
 |       } else if (ret <= 0) { | 
 |         ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       } | 
 |       break; | 
 |  | 
 |     case BIO_CTRL_PENDING:  // More to read in buffer | 
 |       assert(ctx->buf_len >= ctx->buf_off); | 
 |       ret = ctx->buf_len - ctx->buf_off; | 
 |       if (ret <= 0) { | 
 |         ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       } | 
 |       break; | 
 |  | 
 |     case BIO_CTRL_FLUSH: | 
 |     // do a final write | 
 |     again: | 
 |       while (ctx->buf_len != ctx->buf_off) { | 
 |         i = b64_write(b, NULL, 0); | 
 |         if (i < 0) { | 
 |           return i; | 
 |         } | 
 |       } | 
 |       if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { | 
 |         if (ctx->tmp_len != 0) { | 
 |           ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, | 
 |                                          (uint8_t *)ctx->tmp, ctx->tmp_len); | 
 |           ctx->buf_off = 0; | 
 |           ctx->tmp_len = 0; | 
 |           goto again; | 
 |         } | 
 |       } else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) { | 
 |         ctx->buf_off = 0; | 
 |         EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len)); | 
 |         // push out the bytes | 
 |         goto again; | 
 |       } | 
 |       // Finally flush the underlying BIO | 
 |       ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       break; | 
 |  | 
 |     case BIO_C_DO_STATE_MACHINE: | 
 |       BIO_clear_retry_flags(b); | 
 |       ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       BIO_copy_next_retry(b); | 
 |       break; | 
 |  | 
 |     case BIO_CTRL_INFO: | 
 |     case BIO_CTRL_GET: | 
 |     case BIO_CTRL_SET: | 
 |     default: | 
 |       ret = BIO_ctrl(b->next_bio, cmd, num, ptr); | 
 |       break; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) { | 
 |   if (b->next_bio == NULL) { | 
 |     return 0; | 
 |   } | 
 |   return BIO_callback_ctrl(b->next_bio, cmd, fp); | 
 | } | 
 |  | 
 | static const BIO_METHOD b64_method = { | 
 |     BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, NULL /* puts */, | 
 |     NULL /* gets */, b64_ctrl,          b64_new,   b64_free, b64_callback_ctrl, | 
 | }; | 
 |  | 
 | const BIO_METHOD *BIO_f_base64(void) { return &b64_method; } |