| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/rsa.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/thread.h> | 
 |  | 
 | #include "../../internal.h" | 
 | #include "../bn/internal.h" | 
 | #include "../delocate.h" | 
 | #include "../rand/fork_detect.h" | 
 | #include "../service_indicator/internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | int rsa_check_public_key(const RSA *rsa) { | 
 |   if (rsa->n == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // TODO(davidben): 16384-bit RSA is huge. Can we bring this down to a limit of | 
 |   // 8192-bit? | 
 |   unsigned n_bits = BN_num_bits(rsa->n); | 
 |   if (n_bits > 16 * 1024) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // TODO(crbug.com/boringssl/607): Raise this limit. 512-bit RSA was factored | 
 |   // in 1999. | 
 |   if (n_bits < 512) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // RSA moduli must be positive and odd. In addition to being necessary for RSA | 
 |   // in general, we cannot setup Montgomery reduction with even moduli. | 
 |   if (!BN_is_odd(rsa->n) || BN_is_negative(rsa->n)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   static const unsigned kMaxExponentBits = 33; | 
 |   if (rsa->e != NULL) { | 
 |     // Reject e = 1, negative e, and even e. e must be odd to be relatively | 
 |     // prime with phi(n). | 
 |     unsigned e_bits = BN_num_bits(rsa->e); | 
 |     if (e_bits < 2 || BN_is_negative(rsa->e) || !BN_is_odd(rsa->e)) { | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); | 
 |       return 0; | 
 |     } | 
 |     if (rsa->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) { | 
 |       // The caller has requested disabling DoS protections. Still, e must be | 
 |       // less than n. | 
 |       if (BN_ucmp(rsa->n, rsa->e) <= 0) { | 
 |         OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); | 
 |         return 0; | 
 |       } | 
 |     } else { | 
 |       // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen | 
 |       // as the limit based on the recommendations in [1] and [2]. Windows | 
 |       // CryptoAPI doesn't support values larger than 32 bits [3], so it is | 
 |       // unlikely that exponents larger than 32 bits are being used for anything | 
 |       // Windows commonly does. | 
 |       // | 
 |       // [1] https://www.imperialviolet.org/2012/03/16/rsae.html | 
 |       // [2] https://www.imperialviolet.org/2012/03/17/rsados.html | 
 |       // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx | 
 |       if (e_bits > kMaxExponentBits) { | 
 |         OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); | 
 |         return 0; | 
 |       } | 
 |  | 
 |       // The upper bound on |e_bits| and lower bound on |n_bits| imply e is | 
 |       // bounded by n. | 
 |       assert(BN_ucmp(rsa->n, rsa->e) > 0); | 
 |     } | 
 |   } else if (!(rsa->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) { | 
 |   if (*out != NULL) { | 
 |     return 1; | 
 |   } | 
 |   BIGNUM *copy = BN_dup(in); | 
 |   if (copy == NULL || | 
 |       !bn_resize_words(copy, width)) { | 
 |     BN_free(copy); | 
 |     return 0; | 
 |   } | 
 |   *out = copy; | 
 |   bn_secret(copy); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // freeze_private_key finishes initializing |rsa|'s private key components. | 
 | // After this function has returned, |rsa| may not be changed. This is needed | 
 | // because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified | 
 | // it wrong (see https://github.com/openssl/openssl/issues/5158). | 
 | static int freeze_private_key(RSA *rsa, BN_CTX *ctx) { | 
 |   CRYPTO_MUTEX_lock_read(&rsa->lock); | 
 |   int frozen = rsa->private_key_frozen; | 
 |   CRYPTO_MUTEX_unlock_read(&rsa->lock); | 
 |   if (frozen) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   CRYPTO_MUTEX_lock_write(&rsa->lock); | 
 |   if (rsa->private_key_frozen) { | 
 |     ret = 1; | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Check the public components are within DoS bounds. | 
 |   if (!rsa_check_public_key(rsa)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Pre-compute various intermediate values, as well as copies of private | 
 |   // exponents with correct widths. Note that other threads may concurrently | 
 |   // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate | 
 |   // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|, | 
 |   // |p|, and |q| with the correct minimal widths. | 
 |  | 
 |   if (rsa->mont_n == NULL) { | 
 |     rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx); | 
 |     if (rsa->mont_n == NULL) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   const BIGNUM *n_fixed = &rsa->mont_n->N; | 
 |  | 
 |   // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The | 
 |   // ASN.1 serialization of RSA private keys unfortunately leaks the byte length | 
 |   // of |rsa->d|, but normalize it so we only leak it once, rather than per | 
 |   // operation. | 
 |   if (rsa->d != NULL && | 
 |       !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (rsa->e != NULL && rsa->p != NULL && rsa->q != NULL) { | 
 |     // TODO: p and q are also CONSTTIME_SECRET but not yet marked as such | 
 |     // because the Montgomery code does things like test whether or not values | 
 |     // are zero. So the secret marking probably needs to happen inside that | 
 |     // code. | 
 |  | 
 |     if (rsa->mont_p == NULL) { | 
 |       rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx); | 
 |       if (rsa->mont_p == NULL) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     const BIGNUM *p_fixed = &rsa->mont_p->N; | 
 |  | 
 |     if (rsa->mont_q == NULL) { | 
 |       rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx); | 
 |       if (rsa->mont_q == NULL) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     const BIGNUM *q_fixed = &rsa->mont_q->N; | 
 |  | 
 |     if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) { | 
 |       // Key generation relies on this function to compute |iqmp|. | 
 |       if (rsa->iqmp == NULL) { | 
 |         BIGNUM *iqmp = BN_new(); | 
 |         if (iqmp == NULL || | 
 |             !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx, | 
 |                                          rsa->mont_p)) { | 
 |           BN_free(iqmp); | 
 |           goto err; | 
 |         } | 
 |         rsa->iqmp = iqmp; | 
 |       } | 
 |  | 
 |       // CRT components are only publicly bounded by their corresponding | 
 |       // moduli's bit lengths. | 
 |       if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) || | 
 |           !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) { | 
 |         goto err; | 
 |       } | 
 |  | 
 |       // Compute |iqmp_mont|, which is |iqmp| in Montgomery form and with the | 
 |       // correct bit width. | 
 |       if (rsa->iqmp_mont == NULL) { | 
 |         BIGNUM *iqmp_mont = BN_new(); | 
 |         if (iqmp_mont == NULL || | 
 |             !BN_to_montgomery(iqmp_mont, rsa->iqmp, rsa->mont_p, ctx)) { | 
 |           BN_free(iqmp_mont); | 
 |           goto err; | 
 |         } | 
 |         rsa->iqmp_mont = iqmp_mont; | 
 |         bn_secret(rsa->iqmp_mont); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   rsa->private_key_frozen = 1; | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   CRYPTO_MUTEX_unlock_write(&rsa->lock); | 
 |   return ret; | 
 | } | 
 |  | 
 | void rsa_invalidate_key(RSA *rsa) { | 
 |   rsa->private_key_frozen = 0; | 
 |  | 
 |   BN_MONT_CTX_free(rsa->mont_n); | 
 |   rsa->mont_n = NULL; | 
 |   BN_MONT_CTX_free(rsa->mont_p); | 
 |   rsa->mont_p = NULL; | 
 |   BN_MONT_CTX_free(rsa->mont_q); | 
 |   rsa->mont_q = NULL; | 
 |  | 
 |   BN_free(rsa->d_fixed); | 
 |   rsa->d_fixed = NULL; | 
 |   BN_free(rsa->dmp1_fixed); | 
 |   rsa->dmp1_fixed = NULL; | 
 |   BN_free(rsa->dmq1_fixed); | 
 |   rsa->dmq1_fixed = NULL; | 
 |   BN_free(rsa->iqmp_mont); | 
 |   rsa->iqmp_mont = NULL; | 
 |  | 
 |   for (size_t i = 0; i < rsa->num_blindings; i++) { | 
 |     BN_BLINDING_free(rsa->blindings[i]); | 
 |   } | 
 |   OPENSSL_free(rsa->blindings); | 
 |   rsa->blindings = NULL; | 
 |   rsa->num_blindings = 0; | 
 |   OPENSSL_free(rsa->blindings_inuse); | 
 |   rsa->blindings_inuse = NULL; | 
 |   rsa->blinding_fork_generation = 0; | 
 | } | 
 |  | 
 | size_t rsa_default_size(const RSA *rsa) { | 
 |   return BN_num_bytes(rsa->n); | 
 | } | 
 |  | 
 | // MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per | 
 | // RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and | 
 | // destroyed as needed. | 
 | #if defined(OPENSSL_TSAN) | 
 | // Smaller under TSAN so that the edge case can be hit with fewer threads. | 
 | #define MAX_BLINDINGS_PER_RSA 2 | 
 | #else | 
 | #define MAX_BLINDINGS_PER_RSA 1024 | 
 | #endif | 
 |  | 
 | // rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by | 
 | // allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If | 
 | // none are free, the cache will be extended by a extra element and the new | 
 | // BN_BLINDING is returned. | 
 | // | 
 | // On success, the index of the assigned BN_BLINDING is written to | 
 | // |*index_used| and must be passed to |rsa_blinding_release| when finished. | 
 | static BN_BLINDING *rsa_blinding_get(RSA *rsa, size_t *index_used, | 
 |                                      BN_CTX *ctx) { | 
 |   assert(ctx != NULL); | 
 |   assert(rsa->mont_n != NULL); | 
 |  | 
 |   BN_BLINDING *ret = NULL; | 
 |   const uint64_t fork_generation = CRYPTO_get_fork_generation(); | 
 |   CRYPTO_MUTEX_lock_write(&rsa->lock); | 
 |  | 
 |   // Wipe the blinding cache on |fork|. | 
 |   if (rsa->blinding_fork_generation != fork_generation) { | 
 |     for (size_t i = 0; i < rsa->num_blindings; i++) { | 
 |       // The inuse flag must be zero unless we were forked from a | 
 |       // multi-threaded process, in which case calling back into BoringSSL is | 
 |       // forbidden. | 
 |       assert(rsa->blindings_inuse[i] == 0); | 
 |       BN_BLINDING_invalidate(rsa->blindings[i]); | 
 |     } | 
 |     rsa->blinding_fork_generation = fork_generation; | 
 |   } | 
 |  | 
 |   uint8_t *const free_inuse_flag = | 
 |       OPENSSL_memchr(rsa->blindings_inuse, 0, rsa->num_blindings); | 
 |   if (free_inuse_flag != NULL) { | 
 |     *free_inuse_flag = 1; | 
 |     *index_used = free_inuse_flag - rsa->blindings_inuse; | 
 |     ret = rsa->blindings[*index_used]; | 
 |     goto out; | 
 |   } | 
 |  | 
 |   if (rsa->num_blindings >= MAX_BLINDINGS_PER_RSA) { | 
 |     // No |BN_BLINDING| is free and nor can the cache be extended. This index | 
 |     // value is magic and indicates to |rsa_blinding_release| that a | 
 |     // |BN_BLINDING| was not inserted into the array. | 
 |     *index_used = MAX_BLINDINGS_PER_RSA; | 
 |     ret = BN_BLINDING_new(); | 
 |     goto out; | 
 |   } | 
 |  | 
 |   // Double the length of the cache. | 
 |   static_assert(MAX_BLINDINGS_PER_RSA < UINT_MAX / 2, | 
 |                 "MAX_BLINDINGS_PER_RSA too large"); | 
 |   size_t new_num_blindings = rsa->num_blindings * 2; | 
 |   if (new_num_blindings == 0) { | 
 |     new_num_blindings = 1; | 
 |   } | 
 |   if (new_num_blindings > MAX_BLINDINGS_PER_RSA) { | 
 |     new_num_blindings = MAX_BLINDINGS_PER_RSA; | 
 |   } | 
 |   assert(new_num_blindings > rsa->num_blindings); | 
 |  | 
 |   BN_BLINDING **new_blindings = | 
 |       OPENSSL_calloc(new_num_blindings, sizeof(BN_BLINDING *)); | 
 |   uint8_t *new_blindings_inuse = OPENSSL_malloc(new_num_blindings); | 
 |   if (new_blindings == NULL || new_blindings_inuse == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(new_blindings, rsa->blindings, | 
 |                  sizeof(BN_BLINDING *) * rsa->num_blindings); | 
 |   OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); | 
 |  | 
 |   for (size_t i = rsa->num_blindings; i < new_num_blindings; i++) { | 
 |     new_blindings[i] = BN_BLINDING_new(); | 
 |     if (new_blindings[i] == NULL) { | 
 |       for (size_t j = rsa->num_blindings; j < i; j++) { | 
 |         BN_BLINDING_free(new_blindings[j]); | 
 |       } | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   memset(&new_blindings_inuse[rsa->num_blindings], 0, | 
 |          new_num_blindings - rsa->num_blindings); | 
 |  | 
 |   new_blindings_inuse[rsa->num_blindings] = 1; | 
 |   *index_used = rsa->num_blindings; | 
 |   assert(*index_used != MAX_BLINDINGS_PER_RSA); | 
 |   ret = new_blindings[rsa->num_blindings]; | 
 |  | 
 |   OPENSSL_free(rsa->blindings); | 
 |   rsa->blindings = new_blindings; | 
 |   OPENSSL_free(rsa->blindings_inuse); | 
 |   rsa->blindings_inuse = new_blindings_inuse; | 
 |   rsa->num_blindings = new_num_blindings; | 
 |  | 
 |   goto out; | 
 |  | 
 | err: | 
 |   OPENSSL_free(new_blindings_inuse); | 
 |   OPENSSL_free(new_blindings); | 
 |  | 
 | out: | 
 |   CRYPTO_MUTEX_unlock_write(&rsa->lock); | 
 |   return ret; | 
 | } | 
 |  | 
 | // rsa_blinding_release marks the cached BN_BLINDING at the given index as free | 
 | // for other threads to use. | 
 | static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, | 
 |                                  size_t blinding_index) { | 
 |   if (blinding_index == MAX_BLINDINGS_PER_RSA) { | 
 |     // This blinding wasn't cached. | 
 |     BN_BLINDING_free(blinding); | 
 |     return; | 
 |   } | 
 |  | 
 |   CRYPTO_MUTEX_lock_write(&rsa->lock); | 
 |   rsa->blindings_inuse[blinding_index] = 0; | 
 |   CRYPTO_MUTEX_unlock_write(&rsa->lock); | 
 | } | 
 |  | 
 | // signing | 
 | int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, | 
 |                          size_t max_out, const uint8_t *in, size_t in_len, | 
 |                          int padding) { | 
 |   const unsigned rsa_size = RSA_size(rsa); | 
 |   uint8_t *buf = NULL; | 
 |   int i, ret = 0; | 
 |  | 
 |   if (max_out < rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   buf = OPENSSL_malloc(rsa_size); | 
 |   if (buf == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   switch (padding) { | 
 |     case RSA_PKCS1_PADDING: | 
 |       i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); | 
 |       break; | 
 |     case RSA_NO_PADDING: | 
 |       i = RSA_padding_add_none(buf, rsa_size, in, in_len); | 
 |       break; | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); | 
 |       goto err; | 
 |   } | 
 |  | 
 |   if (i <= 0) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!rsa_private_transform_no_self_test(rsa, out, buf, rsa_size)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   CONSTTIME_DECLASSIFY(out, rsa_size); | 
 |   *out_len = rsa_size; | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(buf); | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 |  | 
 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); | 
 |  | 
 | int rsa_verify_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, | 
 |                                 size_t max_out, const uint8_t *in, | 
 |                                 size_t in_len, int padding) { | 
 |   if (rsa->n == NULL || rsa->e == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!rsa_check_public_key(rsa)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const unsigned rsa_size = RSA_size(rsa); | 
 |   BIGNUM *f, *result; | 
 |  | 
 |   if (max_out < rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_len != rsa_size) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BN_CTX *ctx = BN_CTX_new(); | 
 |   if (ctx == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   uint8_t *buf = NULL; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   f = BN_CTX_get(ctx); | 
 |   result = BN_CTX_get(ctx); | 
 |   if (f == NULL || result == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (padding == RSA_NO_PADDING) { | 
 |     buf = out; | 
 |   } else { | 
 |     // Allocate a temporary buffer to hold the padded plaintext. | 
 |     buf = OPENSSL_malloc(rsa_size); | 
 |     if (buf == NULL) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (BN_bin2bn(in, in_len, f) == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (BN_ucmp(f, rsa->n) >= 0) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || | 
 |       !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!BN_bn2bin_padded(buf, rsa_size, result)) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   switch (padding) { | 
 |     case RSA_PKCS1_PADDING: | 
 |       ret = | 
 |           RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size); | 
 |       break; | 
 |     case RSA_NO_PADDING: | 
 |       ret = 1; | 
 |       *out_len = rsa_size; | 
 |       break; | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); | 
 |       goto err; | 
 |   } | 
 |  | 
 |   if (!ret) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); | 
 |     goto err; | 
 |   } | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   BN_CTX_free(ctx); | 
 |   if (buf != out) { | 
 |     OPENSSL_free(buf); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, | 
 |                                 size_t max_out, const uint8_t *in, | 
 |                                 size_t in_len, int padding) { | 
 |   boringssl_ensure_rsa_self_test(); | 
 |   return rsa_verify_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, | 
 |                                      padding); | 
 | } | 
 |  | 
 | int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, | 
 |                                   size_t len) { | 
 |   if (rsa->n == NULL || rsa->d == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BIGNUM *f, *result; | 
 |   BN_CTX *ctx = NULL; | 
 |   size_t blinding_index = 0; | 
 |   BN_BLINDING *blinding = NULL; | 
 |   int ret = 0; | 
 |  | 
 |   ctx = BN_CTX_new(); | 
 |   if (ctx == NULL) { | 
 |     goto err; | 
 |   } | 
 |   BN_CTX_start(ctx); | 
 |   f = BN_CTX_get(ctx); | 
 |   result = BN_CTX_get(ctx); | 
 |  | 
 |   if (f == NULL || result == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // The caller should have ensured this. | 
 |   assert(len == BN_num_bytes(rsa->n)); | 
 |   if (BN_bin2bn(in, len, f) == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // The input to the RSA private transform may be secret, but padding is | 
 |   // expected to construct a value within range, so we can leak this comparison. | 
 |   if (constant_time_declassify_int(BN_ucmp(f, rsa->n) >= 0)) { | 
 |     // Usually the padding functions would catch this. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!freeze_private_key(rsa, ctx)) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   const int do_blinding = | 
 |       (rsa->flags & (RSA_FLAG_NO_BLINDING | RSA_FLAG_NO_PUBLIC_EXPONENT)) == 0; | 
 |  | 
 |   if (rsa->e == NULL && do_blinding) { | 
 |     // We cannot do blinding or verification without |e|, and continuing without | 
 |     // those countermeasures is dangerous. However, the Java/Android RSA API | 
 |     // requires support for keys where only |d| and |n| (and not |e|) are known. | 
 |     // The callers that require that bad behavior must set | 
 |     // |RSA_FLAG_NO_BLINDING| or use |RSA_new_private_key_no_e|. | 
 |     // | 
 |     // TODO(davidben): Update this comment when Conscrypt is updated to use | 
 |     // |RSA_new_private_key_no_e|. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (do_blinding) { | 
 |     blinding = rsa_blinding_get(rsa, &blinding_index, ctx); | 
 |     if (blinding == NULL) { | 
 |       OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |       goto err; | 
 |     } | 
 |     if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && | 
 |       rsa->dmq1 != NULL && rsa->iqmp != NULL && | 
 |       // Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant | 
 |       // time, which requires primes be the same size, rounded to the Montgomery | 
 |       // coefficient. (See |mod_montgomery|.) This is not required by RFC 8017, | 
 |       // but it is true for keys generated by us and all common implementations. | 
 |       bn_less_than_montgomery_R(rsa->q, rsa->mont_p) && | 
 |       bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) { | 
 |     if (!mod_exp(result, f, rsa, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx, | 
 |                                         rsa->mont_n)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Verify the result to protect against fault attacks as described in the | 
 |   // 1997 paper "On the Importance of Checking Cryptographic Protocols for | 
 |   // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some | 
 |   // implementations do this only when the CRT is used, but we do it in all | 
 |   // cases. Section 6 of the aforementioned paper describes an attack that | 
 |   // works when the CRT isn't used. That attack is much less likely to succeed | 
 |   // than the CRT attack, but there have likely been improvements since 1997. | 
 |   // | 
 |   // This check is cheap assuming |e| is small, which we require in | 
 |   // |rsa_check_public_key|. | 
 |   if (rsa->e != NULL) { | 
 |     BIGNUM *vrfy = BN_CTX_get(ctx); | 
 |     if (vrfy == NULL || | 
 |         !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || | 
 |         !constant_time_declassify_int(BN_equal_consttime(vrfy, f))) { | 
 |       OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (do_blinding && | 
 |       !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // The computation should have left |result| as a maximally-wide number, so | 
 |   // that it and serializing does not leak information about the magnitude of | 
 |   // the result. | 
 |   // | 
 |   // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. | 
 |   assert(result->width == rsa->mont_n->N.width); | 
 |   bn_assert_fits_in_bytes(result, len); | 
 |   if (!BN_bn2bin_padded(out, len, result)) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   if (ctx != NULL) { | 
 |     BN_CTX_end(ctx); | 
 |     BN_CTX_free(ctx); | 
 |   } | 
 |   if (blinding != NULL) { | 
 |     rsa_blinding_release(rsa, blinding, blinding_index); | 
 |   } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | // mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced | 
 | // modulo |p| times |q|. It returns one on success and zero on error. | 
 | static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p, | 
 |                           const BN_MONT_CTX *mont_p, const BIGNUM *q, | 
 |                           BN_CTX *ctx) { | 
 |   // Reducing in constant-time with Montgomery reduction requires I <= p * R. We | 
 |   // have I < p * q, so this follows if q < R. The caller should have checked | 
 |   // this already. | 
 |   if (!bn_less_than_montgomery_R(q, mont_p)) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p. | 
 |       !BN_from_montgomery(r, I, mont_p, ctx) || | 
 |       // Multiply by R^2 and do another Montgomery reduction to compute | 
 |       // I * R^-1 * R^2 * R^-1 = I mod p. | 
 |       !BN_to_montgomery(r, r, mont_p, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and | 
 |   // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute | 
 |   // I * R mod p here and save a reduction per prime. But this would require | 
 |   // changing the RSAZ code and may not be worth it. Note that the RSAZ code | 
 |   // uses a different radix, so it uses R' = 2^1044. There we'd actually want | 
 |   // R^2 * R', and would futher benefit from a precomputed R'^2. It currently | 
 |   // converts |mont_p->RR| to R'^2. | 
 |   return 1; | 
 | } | 
 |  | 
 | static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { | 
 |   assert(ctx != NULL); | 
 |  | 
 |   assert(rsa->n != NULL); | 
 |   assert(rsa->e != NULL); | 
 |   assert(rsa->d != NULL); | 
 |   assert(rsa->p != NULL); | 
 |   assert(rsa->q != NULL); | 
 |   assert(rsa->dmp1 != NULL); | 
 |   assert(rsa->dmq1 != NULL); | 
 |   assert(rsa->iqmp != NULL); | 
 |  | 
 |   BIGNUM *r1, *m1; | 
 |   int ret = 0; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   r1 = BN_CTX_get(ctx); | 
 |   m1 = BN_CTX_get(ctx); | 
 |   if (r1 == NULL || | 
 |       m1 == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!freeze_private_key(rsa, ctx)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if | 
 |   // someone gives us non-minimal values, these will be slightly more efficient | 
 |   // on the non-Montgomery operations. | 
 |   const BIGNUM *n = &rsa->mont_n->N; | 
 |   const BIGNUM *p = &rsa->mont_p->N; | 
 |   const BIGNUM *q = &rsa->mont_q->N; | 
 |  | 
 |   // This is a pre-condition for |mod_montgomery|. It was already checked by the | 
 |   // caller. | 
 |   declassify_assert(BN_ucmp(I, n) < 0); | 
 |  | 
 |   if (// |m1| is the result modulo |q|. | 
 |       !mod_montgomery(r1, I, q, rsa->mont_q, p, ctx) || | 
 |       !BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1_fixed, q, ctx, | 
 |                                  rsa->mont_q) || | 
 |       // |r0| is the result modulo |p|. | 
 |       !mod_montgomery(r1, I, p, rsa->mont_p, q, ctx) || | 
 |       !BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1_fixed, p, ctx, | 
 |                                  rsa->mont_p) || | 
 |       // Compute r0 = r0 - m1 mod p. |m1| is reduced mod |q|, not |p|, so we | 
 |       // just run |mod_montgomery| again for simplicity. This could be more | 
 |       // efficient with more cases: if |p > q|, |m1| is already reduced. If | 
 |       // |p < q| but they have the same bit width, |bn_reduce_once| suffices. | 
 |       // However, compared to over 2048 Montgomery multiplications above, this | 
 |       // difference is not measurable. | 
 |       !mod_montgomery(r1, m1, p, rsa->mont_p, q, ctx) || | 
 |       !bn_mod_sub_consttime(r0, r0, r1, p, ctx) || | 
 |       // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this | 
 |       // in constant time. |iqmp_mont| is in Montgomery form and r0 is not, so | 
 |       // the result is taken out of Montgomery form. | 
 |       !BN_mod_mul_montgomery(r0, r0, rsa->iqmp_mont, rsa->mont_p, ctx) || | 
 |       // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so | 
 |       // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0, | 
 |       // so it is correct mod q. Finally, the result is bounded by [m1, n + m1), | 
 |       // and the result is at least |m1|, so this must be the unique answer in | 
 |       // [0, n). | 
 |       !bn_mul_consttime(r0, r0, q, ctx) ||  // | 
 |       !bn_uadd_consttime(r0, r0, m1)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // The result should be bounded by |n|, but fixed-width operations may | 
 |   // bound the width slightly higher, so fix it. This trips constant-time checks | 
 |   // because a naive data flow analysis does not realize the excess words are | 
 |   // publicly zero. | 
 |   declassify_assert(BN_cmp(r0, n) < 0); | 
 |   bn_assert_fits_in_bytes(r0, BN_num_bytes(n)); | 
 |   if (!bn_resize_words(r0, n->width)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | static int ensure_bignum(BIGNUM **out) { | 
 |   if (*out == NULL) { | 
 |     *out = BN_new(); | 
 |   } | 
 |   return *out != NULL; | 
 | } | 
 |  | 
 | // kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2²⁰⁴⁷×√2⌋. This is | 
 | // chosen to give enough precision for 4096-bit RSA, the largest key size FIPS | 
 | // specifies. Key sizes beyond this will round up. | 
 | // | 
 | // To calculate, use the following Haskell code: | 
 | // | 
 | // import Text.Printf (printf) | 
 | // import Data.List (intercalate) | 
 | // | 
 | // pow2 = 4095 | 
 | // target = 2^pow2 | 
 | // | 
 | // f x = x*x - (toRational target) | 
 | // | 
 | // fprime x = 2*x | 
 | // | 
 | // newtonIteration x = x - (f x) / (fprime x) | 
 | // | 
 | // converge x = | 
 | //   let n = floor x in | 
 | //   if n*n - target < 0 && (n+1)*(n+1) - target > 0 | 
 | //     then n | 
 | //     else converge (newtonIteration x) | 
 | // | 
 | // divrem bits x = (x `div` (2^bits), x `rem` (2^bits)) | 
 | // | 
 | // bnWords :: Integer -> [Integer] | 
 | // bnWords x = | 
 | //   if x == 0 | 
 | //     then [] | 
 | //     else let (high, low) = divrem 64 x in low : bnWords high | 
 | // | 
 | // showWord x = let (high, low) = divrem 32 x in printf "TOBN(0x%08x, 0x%08x)" high low | 
 | // | 
 | // output :: String | 
 | // output = intercalate ", " $ map showWord $ bnWords $ converge (2 ^ (pow2 `div` 2)) | 
 | // | 
 | // To verify this number, check that n² < 2⁴⁰⁹⁵ < (n+1)², where n is value | 
 | // represented here. Note the components are listed in little-endian order. Here | 
 | // is some sample Python code to check: | 
 | // | 
 | //   >>> TOBN = lambda a, b: a << 32 | b | 
 | //   >>> l = [ <paste the contents of kSqrtTwo> ] | 
 | //   >>> n = sum(a * 2**(64*i) for i, a in enumerate(l)) | 
 | //   >>> n**2 < 2**4095 < (n+1)**2 | 
 | //   True | 
 | const BN_ULONG kBoringSSLRSASqrtTwo[] = { | 
 |     TOBN(0x4d7c60a5, 0xe633e3e1), TOBN(0x5fcf8f7b, 0xca3ea33b), | 
 |     TOBN(0xc246785e, 0x92957023), TOBN(0xf9acce41, 0x797f2805), | 
 |     TOBN(0xfdfe170f, 0xd3b1f780), TOBN(0xd24f4a76, 0x3facb882), | 
 |     TOBN(0x18838a2e, 0xaff5f3b2), TOBN(0xc1fcbdde, 0xa2f7dc33), | 
 |     TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307), | 
 |     TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f), | 
 |     TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651), | 
 |     TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd), | 
 |     TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e), | 
 |     TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc), | 
 |     TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a), | 
 |     TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e), | 
 |     TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a), | 
 |     TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3), | 
 |     TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), | 
 |     TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484), | 
 | }; | 
 | const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo); | 
 |  | 
 | // generate_prime sets |out| to a prime with length |bits| such that |out|-1 is | 
 | // relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to | 
 | // |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large | 
 | // sizes), and |pow2_bits_100| must be 2^(bits-100). | 
 | // | 
 | // This function fails with probability around 2^-21. | 
 | static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e, | 
 |                           const BIGNUM *p, const BIGNUM *sqrt2, | 
 |                           const BIGNUM *pow2_bits_100, BN_CTX *ctx, | 
 |                           BN_GENCB *cb) { | 
 |   if (bits < 128 || (bits % BN_BITS2) != 0) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     return 0; | 
 |   } | 
 |   assert(BN_is_pow2(pow2_bits_100)); | 
 |   assert(BN_is_bit_set(pow2_bits_100, bits - 100)); | 
 |  | 
 |   // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2. | 
 |  | 
 |   // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3, | 
 |   // the 186-4 limit is too low, so we use a higher one. Note this case is not | 
 |   // reachable from |RSA_generate_key_fips|. | 
 |   // | 
 |   // |limit| determines the failure probability. We must find a prime that is | 
 |   // not 1 mod |e|. By the prime number theorem, we'll find one with probability | 
 |   // p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we | 
 |   // discard even numbers. | 
 |   // | 
 |   // The failure probability is thus (1-p)^limit. To convert that to a power of | 
 |   // two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2). | 
 |   // | 
 |   // >>> def f(bits, e, limit): | 
 |   // ...   p = (e-1.0)/e * 2.0/(math.log(2)*bits) | 
 |   // ...   return -limit * math.log(1 - p) / math.log(2) | 
 |   // ... | 
 |   // >>> f(1024, 65537, 5*1024) | 
 |   // 20.842750558272634 | 
 |   // >>> f(1536, 65537, 5*1536) | 
 |   // 20.83294549602474 | 
 |   // >>> f(2048, 65537, 5*2048) | 
 |   // 20.828047576234948 | 
 |   // >>> f(1024, 3, 8*1024) | 
 |   // 22.222147925962307 | 
 |   // >>> f(1536, 3, 8*1536) | 
 |   // 22.21518251065506 | 
 |   // >>> f(2048, 3, 8*2048) | 
 |   // 22.211701985875937 | 
 |   if (bits >= INT_MAX/32) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |   int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5; | 
 |  | 
 |   int ret = 0, tries = 0, rand_tries = 0; | 
 |   BN_CTX_start(ctx); | 
 |   BIGNUM *tmp = BN_CTX_get(ctx); | 
 |   if (tmp == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   for (;;) { | 
 |     // Generate a random number of length |bits| where the bottom bit is set | 
 |     // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the | 
 |     // bound checked below in steps 4.4 and 5.5). | 
 |     if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) || | 
 |         !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (p != NULL) { | 
 |       // If |p| and |out| are too close, try again (step 5.4). | 
 |       if (!bn_abs_sub_consttime(tmp, out, p, ctx)) { | 
 |         goto err; | 
 |       } | 
 |       if (BN_cmp(tmp, pow2_bits_100) <= 0) { | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent | 
 |     // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes. | 
 |     // | 
 |     // For larger keys, the comparison is approximate, leaning towards | 
 |     // retrying. That is, we reject a negligible fraction of primes that are | 
 |     // within the FIPS bound, but we will never accept a prime outside the | 
 |     // bound, ensuring the resulting RSA key is the right size. | 
 |     // | 
 |     // Values over the threshold are discarded, so it is safe to leak this | 
 |     // comparison. | 
 |     if (constant_time_declassify_int(BN_cmp(out, sqrt2) <= 0)) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     // RSA key generation's bottleneck is discarding composites. If it fails | 
 |     // trial division, do not bother computing a GCD or performing Miller-Rabin. | 
 |     if (!bn_odd_number_is_obviously_composite(out)) { | 
 |       // Check gcd(out-1, e) is one (steps 4.5 and 5.6). Leaking the final | 
 |       // result of this comparison is safe because, if not relatively prime, the | 
 |       // value will be discarded. | 
 |       int relatively_prime; | 
 |       if (!bn_usub_consttime(tmp, out, BN_value_one()) || | 
 |           !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) { | 
 |         goto err; | 
 |       } | 
 |       if (constant_time_declassify_int(relatively_prime)) { | 
 |         // Test |out| for primality (steps 4.5.1 and 5.6.1). | 
 |         int is_probable_prime; | 
 |         if (!BN_primality_test(&is_probable_prime, out, | 
 |                                BN_prime_checks_for_generation, ctx, 0, cb)) { | 
 |           goto err; | 
 |         } | 
 |         if (is_probable_prime) { | 
 |           ret = 1; | 
 |           goto err; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // If we've tried too many times to find a prime, abort (steps 4.7 and | 
 |     // 5.8). | 
 |     tries++; | 
 |     if (tries >= limit) { | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS); | 
 |       goto err; | 
 |     } | 
 |     if (!BN_GENCB_call(cb, 2, tries)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | // rsa_generate_key_impl generates an RSA key using a generalized version of | 
 | // FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks | 
 | // for FIPS-compliant key generation. | 
 | // | 
 | // This function returns one on success and zero on failure. It has a failure | 
 | // probability of about 2^-20. | 
 | static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value, | 
 |                                  BN_GENCB *cb) { | 
 |   // See FIPS 186-4 appendix B.3. This function implements a generalized version | 
 |   // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks | 
 |   // for FIPS-compliant key generation. | 
 |  | 
 |   // Always generate RSA keys which are a multiple of 128 bits. Round |bits| | 
 |   // down as needed. | 
 |   bits &= ~127; | 
 |  | 
 |   // Reject excessively small keys. | 
 |   if (bits < 256) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Reject excessively large public exponents. Windows CryptoAPI and Go don't | 
 |   // support values larger than 32 bits, so match their limits for generating | 
 |   // keys. (|rsa_check_public_key| uses a slightly more conservative value, but | 
 |   // we don't need to support generating such keys.) | 
 |   // https://github.com/golang/go/issues/3161 | 
 |   // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx | 
 |   if (BN_num_bits(e_value) > 32) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   int prime_bits = bits / 2; | 
 |   BN_CTX *ctx = BN_CTX_new(); | 
 |   if (ctx == NULL) { | 
 |     goto bn_err; | 
 |   } | 
 |   BN_CTX_start(ctx); | 
 |   BIGNUM *totient = BN_CTX_get(ctx); | 
 |   BIGNUM *pm1 = BN_CTX_get(ctx); | 
 |   BIGNUM *qm1 = BN_CTX_get(ctx); | 
 |   BIGNUM *sqrt2 = BN_CTX_get(ctx); | 
 |   BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx); | 
 |   BIGNUM *pow2_prime_bits = BN_CTX_get(ctx); | 
 |   if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL || | 
 |       pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL || | 
 |       !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) || | 
 |       !BN_set_bit(pow2_prime_bits, prime_bits)) { | 
 |     goto bn_err; | 
 |   } | 
 |  | 
 |   // We need the RSA components non-NULL. | 
 |   if (!ensure_bignum(&rsa->n) || | 
 |       !ensure_bignum(&rsa->d) || | 
 |       !ensure_bignum(&rsa->e) || | 
 |       !ensure_bignum(&rsa->p) || | 
 |       !ensure_bignum(&rsa->q) || | 
 |       !ensure_bignum(&rsa->dmp1) || | 
 |       !ensure_bignum(&rsa->dmq1)) { | 
 |     goto bn_err; | 
 |   } | 
 |  | 
 |   if (!BN_copy(rsa->e, e_value)) { | 
 |     goto bn_err; | 
 |   } | 
 |  | 
 |   // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋. | 
 |   if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) { | 
 |     goto bn_err; | 
 |   } | 
 |   int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2; | 
 |   assert(sqrt2_bits == (int)BN_num_bits(sqrt2)); | 
 |   if (sqrt2_bits > prime_bits) { | 
 |     // For key sizes up to 4096 (prime_bits = 2048), this is exactly | 
 |     // ⌊2^(prime_bits-1)×√2⌋. | 
 |     if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) { | 
 |       goto bn_err; | 
 |     } | 
 |   } else if (prime_bits > sqrt2_bits) { | 
 |     // For key sizes beyond 4096, this is approximate. We err towards retrying | 
 |     // to ensure our key is the right size and round up. | 
 |     if (!BN_add_word(sqrt2, 1) || | 
 |         !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) { | 
 |       goto bn_err; | 
 |     } | 
 |   } | 
 |   assert(prime_bits == (int)BN_num_bits(sqrt2)); | 
 |  | 
 |   do { | 
 |     // Generate p and q, each of size |prime_bits|, using the steps outlined in | 
 |     // appendix FIPS 186-4 appendix B.3.3. | 
 |     // | 
 |     // Each call to |generate_prime| fails with probability p = 2^-21. The | 
 |     // probability that either call fails is 1 - (1-p)^2, which is around 2^-20. | 
 |     if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, | 
 |                         pow2_prime_bits_100, ctx, cb) || | 
 |         !BN_GENCB_call(cb, 3, 0) || | 
 |         !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, | 
 |                         pow2_prime_bits_100, ctx, cb) || | 
 |         !BN_GENCB_call(cb, 3, 1)) { | 
 |       goto bn_err; | 
 |     } | 
 |  | 
 |     if (BN_cmp(rsa->p, rsa->q) < 0) { | 
 |       BIGNUM *tmp = rsa->p; | 
 |       rsa->p = rsa->q; | 
 |       rsa->q = tmp; | 
 |     } | 
 |  | 
 |     // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs | 
 |     // from typical RSA implementations which use (p-1)*(q-1). | 
 |     // | 
 |     // Note this means the size of d might reveal information about p-1 and | 
 |     // q-1. However, we do operations with Chinese Remainder Theorem, so we only | 
 |     // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient | 
 |     // does not affect those two values. | 
 |     int no_inverse; | 
 |     if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) || | 
 |         !bn_usub_consttime(qm1, rsa->q, BN_value_one()) || | 
 |         !bn_lcm_consttime(totient, pm1, qm1, ctx) || | 
 |         !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) { | 
 |       goto bn_err; | 
 |     } | 
 |  | 
 |     // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on | 
 |     // values for d. When we retry, p and q are discarded, so it is safe to leak | 
 |     // this comparison. | 
 |   } while (constant_time_declassify_int(BN_cmp(rsa->d, pow2_prime_bits) <= 0)); | 
 |  | 
 |   assert(BN_num_bits(pm1) == (unsigned)prime_bits); | 
 |   assert(BN_num_bits(qm1) == (unsigned)prime_bits); | 
 |   if (// Calculate n. | 
 |       !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) || | 
 |       // Calculate d mod (p-1). | 
 |       !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) || | 
 |       // Calculate d mod (q-1) | 
 |       !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) { | 
 |     goto bn_err; | 
 |   } | 
 |   bn_set_minimal_width(rsa->n); | 
 |  | 
 |   // |rsa->n| is computed from the private key, but is public. | 
 |   bn_declassify(rsa->n); | 
 |  | 
 |   // Sanity-check that |rsa->n| has the specified size. This is implied by | 
 |   // |generate_prime|'s bounds. | 
 |   if (BN_num_bits(rsa->n) != (unsigned)bits) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Call |freeze_private_key| to compute the inverse of q mod p, by way of | 
 |   // |rsa->mont_p|. | 
 |   if (!freeze_private_key(rsa, ctx)) { | 
 |     goto bn_err; | 
 |   } | 
 |  | 
 |   // The key generation process is complex and thus error-prone. It could be | 
 |   // disastrous to generate and then use a bad key so double-check that the key | 
 |   // makes sense. | 
 |   if (!RSA_check_key(rsa)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | bn_err: | 
 |   if (!ret) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
 |   } | 
 | err: | 
 |   if (ctx != NULL) { | 
 |     BN_CTX_end(ctx); | 
 |     BN_CTX_free(ctx); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | static void replace_bignum(BIGNUM **out, BIGNUM **in) { | 
 |   BN_free(*out); | 
 |   *out = *in; | 
 |   *in = NULL; | 
 | } | 
 |  | 
 | static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) { | 
 |   BN_MONT_CTX_free(*out); | 
 |   *out = *in; | 
 |   *in = NULL; | 
 | } | 
 |  | 
 | static int RSA_generate_key_ex_maybe_fips(RSA *rsa, int bits, | 
 |                                           const BIGNUM *e_value, BN_GENCB *cb, | 
 |                                           int check_fips) { | 
 |   boringssl_ensure_rsa_self_test(); | 
 |  | 
 |   if (rsa == NULL) { | 
 |     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   RSA *tmp = NULL; | 
 |   uint32_t err; | 
 |   int ret = 0; | 
 |  | 
 |   // |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale, | 
 |   // so we run the FIPS algorithm four times, bringing it down to 2^-80. We | 
 |   // should just adjust the retry limit, but FIPS 186-4 prescribes that value | 
 |   // and thus results in unnecessary complexity. | 
 |   int failures = 0; | 
 |   do { | 
 |     ERR_clear_error(); | 
 |     // Generate into scratch space, to avoid leaving partial work on failure. | 
 |     tmp = RSA_new(); | 
 |     if (tmp == NULL) { | 
 |       goto out; | 
 |     } | 
 |  | 
 |     if (rsa_generate_key_impl(tmp, bits, e_value, cb)) { | 
 |       break; | 
 |     } | 
 |  | 
 |     err = ERR_peek_error(); | 
 |     RSA_free(tmp); | 
 |     tmp = NULL; | 
 |     failures++; | 
 |  | 
 |     // Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced | 
 |     // failure in |BN_GENCB_call| is still fatal. | 
 |   } while (failures < 4 && ERR_GET_LIB(err) == ERR_LIB_RSA && | 
 |            ERR_GET_REASON(err) == RSA_R_TOO_MANY_ITERATIONS); | 
 |  | 
 |   if (tmp == NULL || (check_fips && !RSA_check_fips(tmp))) { | 
 |     goto out; | 
 |   } | 
 |  | 
 |   rsa_invalidate_key(rsa); | 
 |   replace_bignum(&rsa->n, &tmp->n); | 
 |   replace_bignum(&rsa->e, &tmp->e); | 
 |   replace_bignum(&rsa->d, &tmp->d); | 
 |   replace_bignum(&rsa->p, &tmp->p); | 
 |   replace_bignum(&rsa->q, &tmp->q); | 
 |   replace_bignum(&rsa->dmp1, &tmp->dmp1); | 
 |   replace_bignum(&rsa->dmq1, &tmp->dmq1); | 
 |   replace_bignum(&rsa->iqmp, &tmp->iqmp); | 
 |   replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n); | 
 |   replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p); | 
 |   replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q); | 
 |   replace_bignum(&rsa->d_fixed, &tmp->d_fixed); | 
 |   replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed); | 
 |   replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed); | 
 |   replace_bignum(&rsa->iqmp_mont, &tmp->iqmp_mont); | 
 |   rsa->private_key_frozen = tmp->private_key_frozen; | 
 |   ret = 1; | 
 |  | 
 | out: | 
 |   RSA_free(tmp); | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value, | 
 |                         BN_GENCB *cb) { | 
 |   return RSA_generate_key_ex_maybe_fips(rsa, bits, e_value, cb, | 
 |                                         /*check_fips=*/0); | 
 | } | 
 |  | 
 | int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) { | 
 |   // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit | 
 |   // primes, respectively) with the prime generation method we use. | 
 |   // Subsequently, IG A.14 stated that larger modulus sizes can be used and ACVP | 
 |   // testing supports 4096 bits. | 
 |   if (bits != 2048 && bits != 3072 && bits != 4096) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BIGNUM *e = BN_new(); | 
 |   int ret = e != NULL && | 
 |             BN_set_word(e, RSA_F4) && | 
 |             RSA_generate_key_ex_maybe_fips(rsa, bits, e, cb, /*check_fips=*/1); | 
 |   BN_free(e); | 
 |  | 
 |   if (ret) { | 
 |     FIPS_service_indicator_update_state(); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) { | 
 |   // All of the methods are NULL to make it easier for the compiler/linker to | 
 |   // drop unused functions. The wrapper functions will select the appropriate | 
 |   // |rsa_default_*| implementation. | 
 |   OPENSSL_memset(out, 0, sizeof(RSA_METHOD)); | 
 |   out->common.is_static = 1; | 
 | } |