|  | /* Copyright (c) 2017, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/ctrdrbg.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../cipher/internal.h" | 
|  | #include "../service_indicator/internal.h" | 
|  |  | 
|  |  | 
|  | // Section references in this file refer to SP 800-90Ar1: | 
|  | // http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf | 
|  |  | 
|  | // See table 3. | 
|  | static const uint64_t kMaxReseedCount = UINT64_C(1) << 48; | 
|  |  | 
|  | CTR_DRBG_STATE *CTR_DRBG_new(const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], | 
|  | const uint8_t *personalization, | 
|  | size_t personalization_len) { | 
|  | CTR_DRBG_STATE *drbg = OPENSSL_malloc(sizeof(CTR_DRBG_STATE)); | 
|  | if (drbg == NULL || | 
|  | !CTR_DRBG_init(drbg, entropy, personalization, personalization_len)) { | 
|  | CTR_DRBG_free(drbg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return drbg; | 
|  | } | 
|  |  | 
|  | void CTR_DRBG_free(CTR_DRBG_STATE *state) { OPENSSL_free(state); } | 
|  |  | 
|  | int CTR_DRBG_init(CTR_DRBG_STATE *drbg, | 
|  | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], | 
|  | const uint8_t *personalization, size_t personalization_len) { | 
|  | // Section 10.2.1.3.1 | 
|  | if (personalization_len > CTR_DRBG_ENTROPY_LEN) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t seed_material[CTR_DRBG_ENTROPY_LEN]; | 
|  | OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN); | 
|  |  | 
|  | for (size_t i = 0; i < personalization_len; i++) { | 
|  | seed_material[i] ^= personalization[i]; | 
|  | } | 
|  |  | 
|  | // Section 10.2.1.2 | 
|  |  | 
|  | // kInitMask is the result of encrypting blocks with big-endian value 1, 2 | 
|  | // and 3 with the all-zero AES-256 key. | 
|  | static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = { | 
|  | 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1, | 
|  | 0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e, | 
|  | 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca, | 
|  | 0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < sizeof(kInitMask); i++) { | 
|  | seed_material[i] ^= kInitMask[i]; | 
|  | } | 
|  |  | 
|  | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32); | 
|  | OPENSSL_memcpy(drbg->counter, seed_material + 32, 16); | 
|  | drbg->reseed_counter = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static_assert(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0, | 
|  | "not a multiple of AES block size"); | 
|  |  | 
|  | // ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a | 
|  | // big-endian number. | 
|  | static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) { | 
|  | uint32_t ctr = CRYPTO_load_u32_be(drbg->counter + 12); | 
|  | CRYPTO_store_u32_be(drbg->counter + 12, ctr + n); | 
|  | } | 
|  |  | 
|  | static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data, | 
|  | size_t data_len) { | 
|  | // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we | 
|  | // allow shorter inputs and right-pad them with zeros. This is equivalent to | 
|  | // the specified algorithm but saves a copy in |CTR_DRBG_generate|. | 
|  | if (data_len > CTR_DRBG_ENTROPY_LEN) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t temp[CTR_DRBG_ENTROPY_LEN]; | 
|  | for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) { | 
|  | ctr32_add(drbg, 1); | 
|  | drbg->block(drbg->counter, temp + i, &drbg->ks); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < data_len; i++) { | 
|  | temp[i] ^= data[i]; | 
|  | } | 
|  |  | 
|  | drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32); | 
|  | OPENSSL_memcpy(drbg->counter, temp + 32, 16); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg, | 
|  | const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], | 
|  | const uint8_t *additional_data, | 
|  | size_t additional_data_len) { | 
|  | // Section 10.2.1.4 | 
|  | uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN]; | 
|  |  | 
|  | if (additional_data_len > 0) { | 
|  | if (additional_data_len > CTR_DRBG_ENTROPY_LEN) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN); | 
|  | for (size_t i = 0; i < additional_data_len; i++) { | 
|  | entropy_copy[i] ^= additional_data[i]; | 
|  | } | 
|  |  | 
|  | entropy = entropy_copy; | 
|  | } | 
|  |  | 
|  | if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | drbg->reseed_counter = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len, | 
|  | const uint8_t *additional_data, | 
|  | size_t additional_data_len) { | 
|  | // See 9.3.1 | 
|  | if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See 10.2.1.5.1 | 
|  | if (drbg->reseed_counter > kMaxReseedCount) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (additional_data_len != 0 && | 
|  | !ctr_drbg_update(drbg, additional_data, additional_data_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // kChunkSize is used to interact better with the cache. Since the AES-CTR | 
|  | // code assumes that it's encrypting rather than just writing keystream, the | 
|  | // buffer has to be zeroed first. Without chunking, large reads would zero | 
|  | // the whole buffer, flushing the L1 cache, and then do another pass (missing | 
|  | // the cache every time) to “encrypt” it. The code can avoid this by | 
|  | // chunking. | 
|  | static const size_t kChunkSize = 8 * 1024; | 
|  |  | 
|  | while (out_len >= AES_BLOCK_SIZE) { | 
|  | size_t todo = kChunkSize; | 
|  | if (todo > out_len) { | 
|  | todo = out_len; | 
|  | } | 
|  |  | 
|  | todo &= ~(AES_BLOCK_SIZE-1); | 
|  | const size_t num_blocks = todo / AES_BLOCK_SIZE; | 
|  |  | 
|  | if (drbg->ctr) { | 
|  | OPENSSL_memset(out, 0, todo); | 
|  | ctr32_add(drbg, 1); | 
|  | drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter); | 
|  | ctr32_add(drbg, (uint32_t)(num_blocks - 1)); | 
|  | } else { | 
|  | for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) { | 
|  | ctr32_add(drbg, 1); | 
|  | drbg->block(drbg->counter, out + i, &drbg->ks); | 
|  | } | 
|  | } | 
|  |  | 
|  | out += todo; | 
|  | out_len -= todo; | 
|  | } | 
|  |  | 
|  | if (out_len > 0) { | 
|  | uint8_t block[AES_BLOCK_SIZE]; | 
|  | ctr32_add(drbg, 1); | 
|  | drbg->block(drbg->counter, block, &drbg->ks); | 
|  |  | 
|  | OPENSSL_memcpy(out, block, out_len); | 
|  | } | 
|  |  | 
|  | // Right-padding |additional_data| in step 2.2 is handled implicitly by | 
|  | // |ctr_drbg_update|, to save a copy. | 
|  | if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | drbg->reseed_counter++; | 
|  | FIPS_service_indicator_update_state(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) { | 
|  | OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE)); | 
|  | } |