|  | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | 
|  | * project 2000. */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 2000-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    licensing@OpenSSL.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). */ | 
|  |  | 
|  | #include <openssl/dsa.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../bytestring/internal.h" | 
|  |  | 
|  |  | 
|  | #define OPENSSL_DSA_MAX_MODULUS_BITS 10000 | 
|  |  | 
|  | // This function is in dsa_asn1.c rather than dsa.c because it is reachable from | 
|  | // |EVP_PKEY| parsers. This makes it easier for the static linker to drop most | 
|  | // of the DSA implementation. | 
|  | int dsa_check_key(const DSA *dsa) { | 
|  | if (!dsa->p || !dsa->q || !dsa->g) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Fully checking for invalid DSA groups is expensive, so security and | 
|  | // correctness of the signature scheme depend on how |dsa| was computed. I.e. | 
|  | // we leave "assurance of domain parameter validity" from FIPS 186-4 to the | 
|  | // caller. However, we check bounds on all values to avoid DoS vectors even | 
|  | // when domain parameters are invalid. In particular, signing will infinite | 
|  | // loop if |g| is zero. | 
|  | if (BN_is_negative(dsa->p) || BN_is_negative(dsa->q) || BN_is_zero(dsa->p) || | 
|  | BN_is_zero(dsa->q) || !BN_is_odd(dsa->p) || !BN_is_odd(dsa->q) || | 
|  | // |q| must be a prime divisor of |p - 1|, which implies |q < p|. | 
|  | BN_cmp(dsa->q, dsa->p) >= 0 || | 
|  | // |g| is in the multiplicative group of |p|. | 
|  | BN_is_negative(dsa->g) || BN_is_zero(dsa->g) || | 
|  | BN_cmp(dsa->g, dsa->p) >= 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // FIPS 186-4 allows only three different sizes for q. | 
|  | unsigned q_bits = BN_num_bits(dsa->q); | 
|  | if (q_bits != 160 && q_bits != 224 && q_bits != 256) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Bound |dsa->p| to avoid a DoS vector. Note this limit is much larger than | 
|  | // the one in FIPS 186-4, which only allows L = 1024, 2048, and 3072. | 
|  | if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dsa->pub_key != NULL) { | 
|  | // The public key is also in the multiplicative group of |p|. | 
|  | if (BN_is_negative(dsa->pub_key) || BN_is_zero(dsa->pub_key) || | 
|  | BN_cmp(dsa->pub_key, dsa->p) >= 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dsa->priv_key != NULL) { | 
|  | // The private key is a non-zero element of the scalar field, determined by | 
|  | // |q|. | 
|  | if (BN_is_negative(dsa->priv_key) || | 
|  | constant_time_declassify_int(BN_is_zero(dsa->priv_key)) || | 
|  | constant_time_declassify_int(BN_cmp(dsa->priv_key, dsa->q) >= 0)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int parse_integer(CBS *cbs, BIGNUM **out) { | 
|  | assert(*out == NULL); | 
|  | *out = BN_new(); | 
|  | if (*out == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return BN_parse_asn1_unsigned(cbs, *out); | 
|  | } | 
|  |  | 
|  | static int marshal_integer(CBB *cbb, BIGNUM *bn) { | 
|  | if (bn == NULL) { | 
|  | // A DSA object may be missing some components. | 
|  | OPENSSL_PUT_ERROR(DSA, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  | return BN_marshal_asn1(cbb, bn); | 
|  | } | 
|  |  | 
|  | DSA_SIG *DSA_SIG_parse(CBS *cbs) { | 
|  | DSA_SIG *ret = DSA_SIG_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | CBS child; | 
|  | if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || | 
|  | !parse_integer(&child, &ret->r) || | 
|  | !parse_integer(&child, &ret->s) || | 
|  | CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); | 
|  | DSA_SIG_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_SIG_marshal(CBB *cbb, const DSA_SIG *sig) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || | 
|  | !marshal_integer(&child, sig->r) || | 
|  | !marshal_integer(&child, sig->s) || | 
|  | !CBB_flush(cbb)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | DSA *DSA_parse_public_key(CBS *cbs) { | 
|  | DSA *ret = DSA_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | CBS child; | 
|  | if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || | 
|  | !parse_integer(&child, &ret->pub_key) || | 
|  | !parse_integer(&child, &ret->p) || | 
|  | !parse_integer(&child, &ret->q) || | 
|  | !parse_integer(&child, &ret->g) || | 
|  | CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  | if (!dsa_check_key(ret)) { | 
|  | goto err; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | DSA_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int DSA_marshal_public_key(CBB *cbb, const DSA *dsa) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || | 
|  | !marshal_integer(&child, dsa->pub_key) || | 
|  | !marshal_integer(&child, dsa->p) || | 
|  | !marshal_integer(&child, dsa->q) || | 
|  | !marshal_integer(&child, dsa->g) || | 
|  | !CBB_flush(cbb)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | DSA *DSA_parse_parameters(CBS *cbs) { | 
|  | DSA *ret = DSA_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | CBS child; | 
|  | if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || | 
|  | !parse_integer(&child, &ret->p) || | 
|  | !parse_integer(&child, &ret->q) || | 
|  | !parse_integer(&child, &ret->g) || | 
|  | CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  | if (!dsa_check_key(ret)) { | 
|  | goto err; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | DSA_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int DSA_marshal_parameters(CBB *cbb, const DSA *dsa) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || | 
|  | !marshal_integer(&child, dsa->p) || | 
|  | !marshal_integer(&child, dsa->q) || | 
|  | !marshal_integer(&child, dsa->g) || | 
|  | !CBB_flush(cbb)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | DSA *DSA_parse_private_key(CBS *cbs) { | 
|  | DSA *ret = DSA_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | CBS child; | 
|  | uint64_t version; | 
|  | if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1_uint64(&child, &version)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (version != 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_VERSION); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!parse_integer(&child, &ret->p) || | 
|  | !parse_integer(&child, &ret->q) || | 
|  | !parse_integer(&child, &ret->g) || | 
|  | !parse_integer(&child, &ret->pub_key) || | 
|  | !parse_integer(&child, &ret->priv_key) || | 
|  | CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  | if (!dsa_check_key(ret)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | DSA_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int DSA_marshal_private_key(CBB *cbb, const DSA *dsa) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_uint64(&child, 0 /* version */) || | 
|  | !marshal_integer(&child, dsa->p) || | 
|  | !marshal_integer(&child, dsa->q) || | 
|  | !marshal_integer(&child, dsa->g) || | 
|  | !marshal_integer(&child, dsa->pub_key) || | 
|  | !marshal_integer(&child, dsa->priv_key) || | 
|  | !CBB_flush(cbb)) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | DSA_SIG *d2i_DSA_SIG(DSA_SIG **out_sig, const uint8_t **inp, long len) { | 
|  | if (len < 0) { | 
|  | return NULL; | 
|  | } | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | DSA_SIG *ret = DSA_SIG_parse(&cbs); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (out_sig != NULL) { | 
|  | DSA_SIG_free(*out_sig); | 
|  | *out_sig = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_DSA_SIG(const DSA_SIG *in, uint8_t **outp) { | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !DSA_SIG_marshal(&cbb, in)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } | 
|  |  | 
|  | DSA *d2i_DSAPublicKey(DSA **out, const uint8_t **inp, long len) { | 
|  | if (len < 0) { | 
|  | return NULL; | 
|  | } | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | DSA *ret = DSA_parse_public_key(&cbs); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (out != NULL) { | 
|  | DSA_free(*out); | 
|  | *out = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_DSAPublicKey(const DSA *in, uint8_t **outp) { | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !DSA_marshal_public_key(&cbb, in)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } | 
|  |  | 
|  | DSA *d2i_DSAPrivateKey(DSA **out, const uint8_t **inp, long len) { | 
|  | if (len < 0) { | 
|  | return NULL; | 
|  | } | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | DSA *ret = DSA_parse_private_key(&cbs); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (out != NULL) { | 
|  | DSA_free(*out); | 
|  | *out = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_DSAPrivateKey(const DSA *in, uint8_t **outp) { | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !DSA_marshal_private_key(&cbb, in)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } | 
|  |  | 
|  | DSA *d2i_DSAparams(DSA **out, const uint8_t **inp, long len) { | 
|  | if (len < 0) { | 
|  | return NULL; | 
|  | } | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | DSA *ret = DSA_parse_parameters(&cbs); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (out != NULL) { | 
|  | DSA_free(*out); | 
|  | *out = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_DSAparams(const DSA *in, uint8_t **outp) { | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !DSA_marshal_parameters(&cbb, in)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } |