|  | /* Originally written by Bodo Moeller for the OpenSSL project. | 
|  | * ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * Portions of the attached software ("Contribution") are developed by | 
|  | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
|  | * | 
|  | * The Contribution is licensed pursuant to the OpenSSL open source | 
|  | * license provided above. | 
|  | * | 
|  | * The elliptic curve binary polynomial software is originally written by | 
|  | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
|  | * Laboratories. */ | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_EC_INTERNAL_H | 
|  | #define OPENSSL_HEADER_EC_INTERNAL_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/ex_data.h> | 
|  | #include <openssl/thread.h> | 
|  | #include <openssl/type_check.h> | 
|  |  | 
|  | #include "../bn/internal.h" | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // Cap the size of all field elements and scalars, including custom curves, to | 
|  | // 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to | 
|  | // be the largest fields anyone plausibly uses. | 
|  | #define EC_MAX_SCALAR_BYTES 66 | 
|  | #define EC_MAX_SCALAR_WORDS ((66 + BN_BYTES - 1) / BN_BYTES) | 
|  |  | 
|  | OPENSSL_COMPILE_ASSERT(EC_MAX_SCALAR_WORDS <= BN_SMALL_MAX_WORDS, | 
|  | bn_small_functions_applicable); | 
|  |  | 
|  | // An EC_SCALAR is an integer fully reduced modulo the order. Only the first | 
|  | // |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP| | 
|  | // and must not be mixed between groups. | 
|  | typedef union { | 
|  | // bytes is the representation of the scalar in little-endian order. | 
|  | uint8_t bytes[EC_MAX_SCALAR_BYTES]; | 
|  | BN_ULONG words[EC_MAX_SCALAR_WORDS]; | 
|  | } EC_SCALAR; | 
|  |  | 
|  | // An EC_FELEM represents a field element. Only the first |field->width| words | 
|  | // are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed | 
|  | // between groups. Additionally, the representation (whether or not elements are | 
|  | // represented in Montgomery-form) may vary between |EC_METHOD|s. | 
|  | typedef union { | 
|  | // bytes is the representation of the field element in little-endian order. | 
|  | uint8_t bytes[EC_MAX_SCALAR_BYTES]; | 
|  | BN_ULONG words[EC_MAX_SCALAR_WORDS]; | 
|  | } EC_FELEM; | 
|  |  | 
|  | // An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is | 
|  | // a plain struct which can be stack-allocated and needs no cleanup. It is | 
|  | // specific to an |EC_GROUP| and must not be mixed between groups. | 
|  | typedef struct { | 
|  | EC_FELEM X, Y, Z; | 
|  | // X, Y, and Z are Jacobian projective coordinates. They represent | 
|  | // (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise. | 
|  | } EC_RAW_POINT; | 
|  |  | 
|  | struct ec_method_st { | 
|  | int (*group_init)(EC_GROUP *); | 
|  | void (*group_finish)(EC_GROUP *); | 
|  | int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *); | 
|  | int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *, | 
|  | BIGNUM *x, BIGNUM *y); | 
|  |  | 
|  | // Computes |r = g_scalar*generator + p_scalar*p| if |g_scalar| and |p_scalar| | 
|  | // are both non-null. Computes |r = g_scalar*generator| if |p_scalar| is null. | 
|  | // Computes |r = p_scalar*p| if g_scalar is null. At least one of |g_scalar| | 
|  | // and |p_scalar| must be non-null, and |p| must be non-null if |p_scalar| is | 
|  | // non-null. | 
|  | void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_SCALAR *g_scalar, | 
|  | const EC_RAW_POINT *p, const EC_SCALAR *p_scalar); | 
|  | // mul_public performs the same computation as mul. It further assumes that | 
|  | // the inputs are public so there is no concern about leaking their values | 
|  | // through timing. | 
|  | void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *p_scalar); | 
|  |  | 
|  | // felem_mul and felem_sqr implement multiplication and squaring, | 
|  | // respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl| | 
|  | // implementations can work both with |EC_GFp_mont_method| and the tuned | 
|  | // operations. | 
|  | // | 
|  | // TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds | 
|  | // many indirect calls in the middle of the generic code, and a bunch of | 
|  | // conversions. If p224-64.c were easily convertable to Montgomery form, we | 
|  | // could say |EC_FELEM| is always in Montgomery form. If we exposed the | 
|  | // internal add and double implementations in each of the curves, we could | 
|  | // give |EC_POINT| an |EC_METHOD|-specific representation and |EC_FELEM| is | 
|  | // purely a |EC_GFp_mont_method| type. | 
|  | void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b); | 
|  | void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); | 
|  |  | 
|  | int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out, | 
|  | const BIGNUM *in); | 
|  | int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out, | 
|  | const EC_FELEM *in); | 
|  |  | 
|  | // scalar_inv_mont sets |out| to |in|^-1, where both input and output are in | 
|  | // Montgomery form. | 
|  | void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const EC_SCALAR *in); | 
|  |  | 
|  | } /* EC_METHOD */; | 
|  |  | 
|  | const EC_METHOD *EC_GFp_mont_method(void); | 
|  |  | 
|  | struct ec_group_st { | 
|  | const EC_METHOD *meth; | 
|  |  | 
|  | // Unlike all other |EC_POINT|s, |generator| does not own |generator->group| | 
|  | // to avoid a reference cycle. | 
|  | EC_POINT *generator; | 
|  | BIGNUM order; | 
|  |  | 
|  | int curve_name;  // optional NID for named curve | 
|  |  | 
|  | BN_MONT_CTX *order_mont;  // data for ECDSA inverse | 
|  |  | 
|  | // The following members are handled by the method functions, | 
|  | // even if they appear generic | 
|  |  | 
|  | BIGNUM field;  // For curves over GF(p), this is the modulus. | 
|  |  | 
|  | EC_FELEM a, b;  // Curve coefficients. | 
|  |  | 
|  | int a_is_minus3;  // enable optimized point arithmetics for special case | 
|  |  | 
|  | CRYPTO_refcount_t references; | 
|  |  | 
|  | BN_MONT_CTX *mont;  // Montgomery structure. | 
|  |  | 
|  | EC_FELEM one;  // The value one. | 
|  | } /* EC_GROUP */; | 
|  |  | 
|  | struct ec_point_st { | 
|  | // group is an owning reference to |group|, unless this is | 
|  | // |group->generator|. | 
|  | EC_GROUP *group; | 
|  | EC_RAW_POINT raw; | 
|  | } /* EC_POINT */; | 
|  |  | 
|  | EC_GROUP *ec_group_new(const EC_METHOD *meth); | 
|  |  | 
|  | // ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success | 
|  | // and zero if |in| is out of range. | 
|  | int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in); | 
|  |  | 
|  | // ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and | 
|  | // zero on allocation failure. | 
|  | int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in); | 
|  |  | 
|  | // ec_felem_neg sets |out| to -|a|. | 
|  | void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a); | 
|  |  | 
|  | // ec_felem_add sets |out| to |a| + |b|. | 
|  | void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, | 
|  | const EC_FELEM *b); | 
|  |  | 
|  | // ec_felem_add sets |out| to |a| - |b|. | 
|  | void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a, | 
|  | const EC_FELEM *b); | 
|  |  | 
|  | // ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros | 
|  | // otherwise. | 
|  | BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a); | 
|  |  | 
|  | // ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones | 
|  | // and |b| if |mask| is all zeros. | 
|  | void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask, | 
|  | const EC_FELEM *a, const EC_FELEM *b); | 
|  |  | 
|  | // ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It | 
|  | // treats |a| and |b| as public and does *not* run in constant time. | 
|  | int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b); | 
|  |  | 
|  | // ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to | 
|  | // |*out|. It returns one on success and zero if |in| is out of range. | 
|  | OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const BIGNUM *in); | 
|  |  | 
|  | // ec_random_nonzero_scalar sets |out| to a uniformly selected random value from | 
|  | // 1 to |group->order| - 1. It returns one on success and zero on error. | 
|  | int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const uint8_t additional_data[32]); | 
|  |  | 
|  | // ec_scalar_add sets |r| to |a| + |b|. | 
|  | void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a, | 
|  | const EC_SCALAR *b); | 
|  |  | 
|  | // ec_scalar_to_montgomery sets |r| to |a| in Montgomery form. | 
|  | void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r, | 
|  | const EC_SCALAR *a); | 
|  |  | 
|  | // ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form. | 
|  | void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r, | 
|  | const EC_SCALAR *a); | 
|  |  | 
|  | // ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are | 
|  | // in Montgomery form. | 
|  | void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r, | 
|  | const EC_SCALAR *a, const EC_SCALAR *b); | 
|  |  | 
|  | // ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in | 
|  | // Montgomery form. | 
|  | void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r, | 
|  | const EC_SCALAR *a); | 
|  |  | 
|  | // ec_point_mul_scalar sets |r| to generator * |g_scalar| + |p| * | 
|  | // |p_scalar|. Unlike other functions which take |EC_SCALAR|, |g_scalar| and | 
|  | // |p_scalar| need not be fully reduced. They need only contain as many bits as | 
|  | // the order. | 
|  | int ec_point_mul_scalar(const EC_GROUP *group, EC_POINT *r, | 
|  | const EC_SCALAR *g_scalar, const EC_POINT *p, | 
|  | const EC_SCALAR *p_scalar, BN_CTX *ctx); | 
|  |  | 
|  | // ec_point_mul_scalar_public performs the same computation as | 
|  | // ec_point_mul_scalar.  It further assumes that the inputs are public so | 
|  | // there is no concern about leaking their values through timing. | 
|  | OPENSSL_EXPORT int ec_point_mul_scalar_public( | 
|  | const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar, | 
|  | const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx); | 
|  |  | 
|  | void ec_GFp_simple_mul(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *p_scalar); | 
|  |  | 
|  | // ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of | 
|  | // |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of | 
|  | // which will be either zero or odd with an absolute value less than  2^w | 
|  | // satisfying | 
|  | //     scalar = \sum_j out[j]*2^j | 
|  | // where at most one of any  w+1  consecutive digits is non-zero | 
|  | // with the exception that the most significant digit may be only | 
|  | // w-1 zeros away from that next non-zero digit. | 
|  | void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, | 
|  | const EC_SCALAR *scalar, size_t bits, int w); | 
|  |  | 
|  | void ec_GFp_simple_mul_public(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *p_scalar); | 
|  |  | 
|  | // method functions in simple.c | 
|  | int ec_GFp_simple_group_init(EC_GROUP *); | 
|  | void ec_GFp_simple_group_finish(EC_GROUP *); | 
|  | int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *); | 
|  | int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, | 
|  | BIGNUM *b); | 
|  | unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *); | 
|  | void ec_GFp_simple_point_init(EC_RAW_POINT *); | 
|  | void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *); | 
|  | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *); | 
|  | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *, | 
|  | const BIGNUM *x, | 
|  | const BIGNUM *y); | 
|  | void ec_GFp_simple_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a, | 
|  | const EC_RAW_POINT *b); | 
|  | void ec_GFp_simple_dbl(const EC_GROUP *, EC_RAW_POINT *r, | 
|  | const EC_RAW_POINT *a); | 
|  | void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *); | 
|  | int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *); | 
|  | int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *); | 
|  | int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a, | 
|  | const EC_RAW_POINT *b); | 
|  | void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r, | 
|  | const EC_SCALAR *a); | 
|  |  | 
|  | // method functions in montgomery.c | 
|  | int ec_GFp_mont_group_init(EC_GROUP *); | 
|  | int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *); | 
|  | void ec_GFp_mont_group_finish(EC_GROUP *); | 
|  | void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b); | 
|  | void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a); | 
|  |  | 
|  | int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, | 
|  | const BIGNUM *in); | 
|  | int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, | 
|  | const EC_FELEM *in); | 
|  |  | 
|  | void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in); | 
|  |  | 
|  | const EC_METHOD *EC_GFp_nistp224_method(void); | 
|  | const EC_METHOD *EC_GFp_nistp256_method(void); | 
|  |  | 
|  | // EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with | 
|  | // x86-64 optimized P256. See http://eprint.iacr.org/2013/816. | 
|  | const EC_METHOD *EC_GFp_nistz256_method(void); | 
|  |  | 
|  | // An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM| | 
|  | // representation. It exists to support the |EC_KEY_get0_private_key| API. | 
|  | typedef struct { | 
|  | BIGNUM bignum; | 
|  | EC_SCALAR scalar; | 
|  | } EC_WRAPPED_SCALAR; | 
|  |  | 
|  | struct ec_key_st { | 
|  | EC_GROUP *group; | 
|  |  | 
|  | EC_POINT *pub_key; | 
|  | EC_WRAPPED_SCALAR *priv_key; | 
|  |  | 
|  | // fixed_k may contain a specific value of 'k', to be used in ECDSA signing. | 
|  | // This is only for the FIPS power-on tests. | 
|  | BIGNUM *fixed_k; | 
|  |  | 
|  | unsigned int enc_flag; | 
|  | point_conversion_form_t conv_form; | 
|  |  | 
|  | CRYPTO_refcount_t references; | 
|  |  | 
|  | ECDSA_METHOD *ecdsa_meth; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data; | 
|  | } /* EC_KEY */; | 
|  |  | 
|  | struct built_in_curve { | 
|  | int nid; | 
|  | const uint8_t *oid; | 
|  | uint8_t oid_len; | 
|  | // comment is a human-readable string describing the curve. | 
|  | const char *comment; | 
|  | // param_len is the number of bytes needed to store a field element. | 
|  | uint8_t param_len; | 
|  | // params points to an array of 6*|param_len| bytes which hold the field | 
|  | // elements of the following (in big-endian order): prime, a, b, generator x, | 
|  | // generator y, order. | 
|  | const uint8_t *params; | 
|  | const EC_METHOD *method; | 
|  | }; | 
|  |  | 
|  | #define OPENSSL_NUM_BUILT_IN_CURVES 4 | 
|  |  | 
|  | struct built_in_curves { | 
|  | struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES]; | 
|  | }; | 
|  |  | 
|  | // OPENSSL_built_in_curves returns a pointer to static information about | 
|  | // standard curves. The array is terminated with an entry where |nid| is | 
|  | // |NID_undef|. | 
|  | const struct built_in_curves *OPENSSL_built_in_curves(void); | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | }  // extern C | 
|  | #endif | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_EC_INTERNAL_H |