|  | /* Copyright (c) 2014, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | void CBB_zero(CBB *cbb) { | 
|  | OPENSSL_memset(cbb, 0, sizeof(CBB)); | 
|  | } | 
|  |  | 
|  | static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) { | 
|  | // This assumes that |cbb| has already been zeroed. | 
|  | struct cbb_buffer_st *base; | 
|  |  | 
|  | base = OPENSSL_malloc(sizeof(struct cbb_buffer_st)); | 
|  | if (base == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | base->buf = buf; | 
|  | base->len = 0; | 
|  | base->cap = cap; | 
|  | base->can_resize = 1; | 
|  | base->error = 0; | 
|  |  | 
|  | cbb->base = base; | 
|  | cbb->is_child = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_init(CBB *cbb, size_t initial_capacity) { | 
|  | CBB_zero(cbb); | 
|  |  | 
|  | uint8_t *buf = OPENSSL_malloc(initial_capacity); | 
|  | if (initial_capacity > 0 && buf == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!cbb_init(cbb, buf, initial_capacity)) { | 
|  | OPENSSL_free(buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { | 
|  | CBB_zero(cbb); | 
|  |  | 
|  | if (!cbb_init(cbb, buf, len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cbb->base->can_resize = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void CBB_cleanup(CBB *cbb) { | 
|  | // Child |CBB|s are non-owning. They are implicitly discarded and should not | 
|  | // be used with |CBB_cleanup| or |ScopedCBB|. | 
|  | assert(!cbb->is_child); | 
|  | if (cbb->is_child) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cbb->base) { | 
|  | if (cbb->base->can_resize) { | 
|  | OPENSSL_free(cbb->base->buf); | 
|  | } | 
|  | OPENSSL_free(cbb->base); | 
|  | } | 
|  | cbb->base = NULL; | 
|  | } | 
|  |  | 
|  | static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out, | 
|  | size_t len) { | 
|  | size_t newlen; | 
|  |  | 
|  | if (base == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | newlen = base->len + len; | 
|  | if (newlen < base->len) { | 
|  | // Overflow | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (newlen > base->cap) { | 
|  | size_t newcap = base->cap * 2; | 
|  | uint8_t *newbuf; | 
|  |  | 
|  | if (!base->can_resize) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (newcap < base->cap || newcap < newlen) { | 
|  | newcap = newlen; | 
|  | } | 
|  | newbuf = OPENSSL_realloc(base->buf, newcap); | 
|  | if (newbuf == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | base->buf = newbuf; | 
|  | base->cap = newcap; | 
|  | } | 
|  |  | 
|  | if (out) { | 
|  | *out = base->buf + base->len; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | base->error = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, | 
|  | size_t len) { | 
|  | if (!cbb_buffer_reserve(base, out, len)) { | 
|  | return 0; | 
|  | } | 
|  | // This will not overflow or |cbb_buffer_reserve| would have failed. | 
|  | base->len += len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint64_t v, | 
|  | size_t len_len) { | 
|  | if (len_len == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uint8_t *buf; | 
|  | if (!cbb_buffer_add(base, &buf, len_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (size_t i = len_len - 1; i < len_len; i--) { | 
|  | buf[i] = v; | 
|  | v >>= 8; | 
|  | } | 
|  |  | 
|  | if (v != 0) { | 
|  | base->error = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { | 
|  | if (cbb->is_child) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) { | 
|  | // |out_data| and |out_len| can only be NULL if the CBB is fixed. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (out_data != NULL) { | 
|  | *out_data = cbb->base->buf; | 
|  | } | 
|  | if (out_len != NULL) { | 
|  | *out_len = cbb->base->len; | 
|  | } | 
|  | cbb->base->buf = NULL; | 
|  | CBB_cleanup(cbb); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // CBB_flush recurses and then writes out any pending length prefix. The | 
|  | // current length of the underlying base is taken to be the length of the | 
|  | // length-prefixed data. | 
|  | int CBB_flush(CBB *cbb) { | 
|  | size_t child_start, i, len; | 
|  |  | 
|  | // If |cbb->base| has hit an error, the buffer is in an undefined state, so | 
|  | // fail all following calls. In particular, |cbb->child| may point to invalid | 
|  | // memory. | 
|  | if (cbb->base == NULL || cbb->base->error) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cbb->child == NULL || cbb->child->pending_len_len == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | child_start = cbb->child->offset + cbb->child->pending_len_len; | 
|  |  | 
|  | if (!CBB_flush(cbb->child) || | 
|  | child_start < cbb->child->offset || | 
|  | cbb->base->len < child_start) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | len = cbb->base->len - child_start; | 
|  |  | 
|  | if (cbb->child->pending_is_asn1) { | 
|  | // For ASN.1 we assume that we'll only need a single byte for the length. | 
|  | // If that turned out to be incorrect, we have to move the contents along | 
|  | // in order to make space. | 
|  | uint8_t len_len; | 
|  | uint8_t initial_length_byte; | 
|  |  | 
|  | assert (cbb->child->pending_len_len == 1); | 
|  |  | 
|  | if (len > 0xfffffffe) { | 
|  | // Too large. | 
|  | goto err; | 
|  | } else if (len > 0xffffff) { | 
|  | len_len = 5; | 
|  | initial_length_byte = 0x80 | 4; | 
|  | } else if (len > 0xffff) { | 
|  | len_len = 4; | 
|  | initial_length_byte = 0x80 | 3; | 
|  | } else if (len > 0xff) { | 
|  | len_len = 3; | 
|  | initial_length_byte = 0x80 | 2; | 
|  | } else if (len > 0x7f) { | 
|  | len_len = 2; | 
|  | initial_length_byte = 0x80 | 1; | 
|  | } else { | 
|  | len_len = 1; | 
|  | initial_length_byte = (uint8_t)len; | 
|  | len = 0; | 
|  | } | 
|  |  | 
|  | if (len_len != 1) { | 
|  | // We need to move the contents along in order to make space. | 
|  | size_t extra_bytes = len_len - 1; | 
|  | if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) { | 
|  | goto err; | 
|  | } | 
|  | OPENSSL_memmove(cbb->base->buf + child_start + extra_bytes, | 
|  | cbb->base->buf + child_start, len); | 
|  | } | 
|  | cbb->base->buf[cbb->child->offset++] = initial_length_byte; | 
|  | cbb->child->pending_len_len = len_len - 1; | 
|  | } | 
|  |  | 
|  | for (i = cbb->child->pending_len_len - 1; i < cbb->child->pending_len_len; | 
|  | i--) { | 
|  | cbb->base->buf[cbb->child->offset + i] = (uint8_t)len; | 
|  | len >>= 8; | 
|  | } | 
|  | if (len != 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | cbb->child->base = NULL; | 
|  | cbb->child = NULL; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | cbb->base->error = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const uint8_t *CBB_data(const CBB *cbb) { | 
|  | assert(cbb->child == NULL); | 
|  | return cbb->base->buf + cbb->offset + cbb->pending_len_len; | 
|  | } | 
|  |  | 
|  | size_t CBB_len(const CBB *cbb) { | 
|  | assert(cbb->child == NULL); | 
|  | assert(cbb->offset + cbb->pending_len_len <= cbb->base->len); | 
|  |  | 
|  | return cbb->base->len - cbb->offset - cbb->pending_len_len; | 
|  | } | 
|  |  | 
|  | static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, | 
|  | uint8_t len_len) { | 
|  | uint8_t *prefix_bytes; | 
|  |  | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t offset = cbb->base->len; | 
|  | if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(prefix_bytes, 0, len_len); | 
|  | OPENSSL_memset(out_contents, 0, sizeof(CBB)); | 
|  | out_contents->base = cbb->base; | 
|  | out_contents->is_child = 1; | 
|  | cbb->child = out_contents; | 
|  | cbb->child->offset = offset; | 
|  | cbb->child->pending_len_len = len_len; | 
|  | cbb->child->pending_is_asn1 = 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 1); | 
|  | } | 
|  |  | 
|  | int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 2); | 
|  | } | 
|  |  | 
|  | int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { | 
|  | return cbb_add_length_prefixed(cbb, out_contents, 3); | 
|  | } | 
|  |  | 
|  | // add_base128_integer encodes |v| as a big-endian base-128 integer where the | 
|  | // high bit of each byte indicates where there is more data. This is the | 
|  | // encoding used in DER for both high tag number form and OID components. | 
|  | static int add_base128_integer(CBB *cbb, uint64_t v) { | 
|  | unsigned len_len = 0; | 
|  | uint64_t copy = v; | 
|  | while (copy > 0) { | 
|  | len_len++; | 
|  | copy >>= 7; | 
|  | } | 
|  | if (len_len == 0) { | 
|  | len_len = 1;  // Zero is encoded with one byte. | 
|  | } | 
|  | for (unsigned i = len_len - 1; i < len_len; i--) { | 
|  | uint8_t byte = (v >> (7 * i)) & 0x7f; | 
|  | if (i != 0) { | 
|  | // The high bit denotes whether there is more data. | 
|  | byte |= 0x80; | 
|  | } | 
|  | if (!CBB_add_u8(cbb, byte)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Split the tag into leading bits and tag number. | 
|  | uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0; | 
|  | unsigned tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK; | 
|  | if (tag_number >= 0x1f) { | 
|  | // Set all the bits in the tag number to signal high tag number form. | 
|  | if (!CBB_add_u8(cbb, tag_bits | 0x1f) || | 
|  | !add_base128_integer(cbb, tag_number)) { | 
|  | return 0; | 
|  | } | 
|  | } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t offset = cbb->base->len; | 
|  | if (!CBB_add_u8(cbb, 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(out_contents, 0, sizeof(CBB)); | 
|  | out_contents->base = cbb->base; | 
|  | out_contents->is_child = 1; | 
|  | cbb->child = out_contents; | 
|  | cbb->child->offset = offset; | 
|  | cbb->child->pending_len_len = 1; | 
|  | cbb->child->pending_is_asn1 = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { | 
|  | uint8_t *dest; | 
|  |  | 
|  | if (!CBB_flush(cbb) || | 
|  | !cbb_buffer_add(cbb->base, &dest, len)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(dest, data, len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_zeros(CBB *cbb, size_t len) { | 
|  | uint8_t *out; | 
|  | if (!CBB_add_space(cbb, &out, len)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memset(out, 0, len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { | 
|  | if (!CBB_flush(cbb) || | 
|  | !cbb_buffer_add(cbb->base, out_data, len)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) { | 
|  | if (!CBB_flush(cbb) || | 
|  | !cbb_buffer_reserve(cbb->base, out_data, len)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_did_write(CBB *cbb, size_t len) { | 
|  | size_t newlen = cbb->base->len + len; | 
|  | if (cbb->child != NULL || | 
|  | newlen < cbb->base->len || | 
|  | newlen > cbb->base->cap) { | 
|  | return 0; | 
|  | } | 
|  | cbb->base->len = newlen; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_u8(CBB *cbb, uint8_t value) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cbb_buffer_add_u(cbb->base, value, 1); | 
|  | } | 
|  |  | 
|  | int CBB_add_u16(CBB *cbb, uint16_t value) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cbb_buffer_add_u(cbb->base, value, 2); | 
|  | } | 
|  |  | 
|  | int CBB_add_u16le(CBB *cbb, uint16_t value) { | 
|  | return CBB_add_u16(cbb, CRYPTO_bswap2(value)); | 
|  | } | 
|  |  | 
|  | int CBB_add_u24(CBB *cbb, uint32_t value) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cbb_buffer_add_u(cbb->base, value, 3); | 
|  | } | 
|  |  | 
|  | int CBB_add_u32(CBB *cbb, uint32_t value) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cbb_buffer_add_u(cbb->base, value, 4); | 
|  | } | 
|  |  | 
|  | int CBB_add_u32le(CBB *cbb, uint32_t value) { | 
|  | return CBB_add_u32(cbb, CRYPTO_bswap4(value)); | 
|  | } | 
|  |  | 
|  | int CBB_add_u64(CBB *cbb, uint64_t value) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  | return cbb_buffer_add_u(cbb->base, value, 8); | 
|  | } | 
|  |  | 
|  | int CBB_add_u64le(CBB *cbb, uint64_t value) { | 
|  | return CBB_add_u64(cbb, CRYPTO_bswap8(value)); | 
|  | } | 
|  |  | 
|  | void CBB_discard_child(CBB *cbb) { | 
|  | if (cbb->child == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cbb->base->len = cbb->child->offset; | 
|  |  | 
|  | cbb->child->base = NULL; | 
|  | cbb->child = NULL; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { | 
|  | return CBB_add_asn1_uint64_with_tag(cbb, value, CBS_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_uint64_with_tag(CBB *cbb, uint64_t value, unsigned tag) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, tag)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int started = 0; | 
|  | for (size_t i = 0; i < 8; i++) { | 
|  | uint8_t byte = (value >> 8*(7-i)) & 0xff; | 
|  | if (!started) { | 
|  | if (byte == 0) { | 
|  | // Don't encode leading zeros. | 
|  | continue; | 
|  | } | 
|  | // If the high bit is set, add a padding byte to make it | 
|  | // unsigned. | 
|  | if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { | 
|  | return 0; | 
|  | } | 
|  | started = 1; | 
|  | } | 
|  | if (!CBB_add_u8(&child, byte)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // 0 is encoded as a single 0, not the empty string. | 
|  | if (!started && !CBB_add_u8(&child, 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return CBB_flush(cbb); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_int64(CBB *cbb, int64_t value) { | 
|  | return CBB_add_asn1_int64_with_tag(cbb, value, CBS_ASN1_INTEGER); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_int64_with_tag(CBB *cbb, int64_t value, unsigned tag) { | 
|  | if (value >= 0) { | 
|  | return CBB_add_asn1_uint64_with_tag(cbb, (uint64_t)value, tag); | 
|  | } | 
|  |  | 
|  | uint8_t bytes[sizeof(int64_t)]; | 
|  | memcpy(bytes, &value, sizeof(value)); | 
|  | int start = 7; | 
|  | // Skip leading sign-extension bytes unless they are necessary. | 
|  | while (start > 0 && (bytes[start] == 0xff && (bytes[start - 1] & 0x80))) { | 
|  | start--; | 
|  | } | 
|  |  | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, tag)) { | 
|  | return 0; | 
|  | } | 
|  | for (int i = start; i >= 0; i--) { | 
|  | if (!CBB_add_u8(&child, bytes[i])) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return CBB_flush(cbb); | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) || | 
|  | !CBB_add_bytes(&child, data, data_len) || | 
|  | !CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_bool(CBB *cbb, int value) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) || | 
|  | !CBB_add_u8(&child, value != 0 ? 0xff : 0) || | 
|  | !CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is | 
|  | // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the | 
|  | // component and the dot, so |cbs| may be passed into the function again for the | 
|  | // next value. | 
|  | static int parse_dotted_decimal(CBS *cbs, uint64_t *out) { | 
|  | *out = 0; | 
|  | int seen_digit = 0; | 
|  | for (;;) { | 
|  | // Valid terminators for a component are the end of the string or a | 
|  | // non-terminal dot. If the string ends with a dot, this is not a valid OID | 
|  | // string. | 
|  | uint8_t u; | 
|  | if (!CBS_get_u8(cbs, &u) || | 
|  | (u == '.' && CBS_len(cbs) > 0)) { | 
|  | break; | 
|  | } | 
|  | if (u < '0' || u > '9' || | 
|  | // Forbid stray leading zeros. | 
|  | (seen_digit && *out == 0) || | 
|  | // Check for overflow. | 
|  | *out > UINT64_MAX / 10 || | 
|  | *out * 10 > UINT64_MAX - (u - '0')) { | 
|  | return 0; | 
|  | } | 
|  | *out = *out * 10 + (u - '0'); | 
|  | seen_digit = 1; | 
|  | } | 
|  | // The empty string is not a legal OID component. | 
|  | return seen_digit; | 
|  | } | 
|  |  | 
|  | int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, (const uint8_t *)text, len); | 
|  |  | 
|  | // OIDs must have at least two components. | 
|  | uint64_t a, b; | 
|  | if (!parse_dotted_decimal(&cbs, &a) || | 
|  | !parse_dotted_decimal(&cbs, &b)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is | 
|  | // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39. | 
|  | if (a > 2 || | 
|  | (a < 2 && b > 39) || | 
|  | b > UINT64_MAX - 80 || | 
|  | !add_base128_integer(cbb, 40u * a + b)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The remaining components are encoded unmodified. | 
|  | while (CBS_len(&cbs) > 0) { | 
|  | if (!parse_dotted_decimal(&cbs, &a) || | 
|  | !add_base128_integer(cbb, a)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int compare_set_of_element(const void *a_ptr, const void *b_ptr) { | 
|  | // See X.690, section 11.6 for the ordering. They are sorted in ascending | 
|  | // order by their DER encoding. | 
|  | const CBS *a = a_ptr, *b = b_ptr; | 
|  | size_t a_len = CBS_len(a), b_len = CBS_len(b); | 
|  | size_t min_len = a_len < b_len ? a_len : b_len; | 
|  | int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  | if (a_len == b_len) { | 
|  | return 0; | 
|  | } | 
|  | // If one is a prefix of the other, the shorter one sorts first. (This is not | 
|  | // actually reachable. No DER encoding is a prefix of another DER encoding.) | 
|  | return a_len < b_len ? -1 : 1; | 
|  | } | 
|  |  | 
|  | int CBB_flush_asn1_set_of(CBB *cbb) { | 
|  | if (!CBB_flush(cbb)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | size_t num_children = 0; | 
|  | CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb)); | 
|  | while (CBS_len(&cbs) != 0) { | 
|  | if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) { | 
|  | return 0; | 
|  | } | 
|  | num_children++; | 
|  | } | 
|  |  | 
|  | if (num_children < 2) { | 
|  | return 1;  // Nothing to do. This is the common case for X.509. | 
|  | } | 
|  | if (num_children > ((size_t)-1) / sizeof(CBS)) { | 
|  | return 0;  // Overflow. | 
|  | } | 
|  |  | 
|  | // Parse out the children and sort. We alias them into a copy of so they | 
|  | // remain valid as we rewrite |cbb|. | 
|  | int ret = 0; | 
|  | size_t buf_len = CBB_len(cbb); | 
|  | uint8_t *buf = OPENSSL_memdup(CBB_data(cbb), buf_len); | 
|  | CBS *children = OPENSSL_malloc(num_children * sizeof(CBS)); | 
|  | if (buf == NULL || children == NULL) { | 
|  | goto err; | 
|  | } | 
|  | CBS_init(&cbs, buf, buf_len); | 
|  | for (size_t i = 0; i < num_children; i++) { | 
|  | if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | qsort(children, num_children, sizeof(CBS), compare_set_of_element); | 
|  |  | 
|  | // Rewind |cbb| and write the contents back in the new order. | 
|  | cbb->base->len = cbb->offset + cbb->pending_len_len; | 
|  | for (size_t i = 0; i < num_children; i++) { | 
|  | if (!CBB_add_bytes(cbb, CBS_data(&children[i]), CBS_len(&children[i]))) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | assert(CBB_len(cbb) == buf_len); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(buf); | 
|  | OPENSSL_free(children); | 
|  | return ret; | 
|  | } |