| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | 
 |  * project 1999. | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    licensing@OpenSSL.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/pkcs8.h> | 
 |  | 
 | #include <limits.h> | 
 |  | 
 | #include <openssl/asn1t.h> | 
 | #include <openssl/asn1.h> | 
 | #include <openssl/bio.h> | 
 | #include <openssl/buf.h> | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/digest.h> | 
 | #include <openssl/hmac.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/rand.h> | 
 | #include <openssl/x509.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../bytestring/internal.h" | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | int pkcs12_iterations_acceptable(uint64_t iterations) { | 
 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
 |   static const uint64_t kIterationsLimit = 2048; | 
 | #else | 
 |   // Windows imposes a limit of 600K. Mozilla say: “so them increasing | 
 |   // maximum to something like 100M or 1G (to have few decades of breathing | 
 |   // room) would be very welcome”[1]. So here we set the limit to 100M. | 
 |   // | 
 |   // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 | 
 |   static const uint64_t kIterationsLimit = 100 * 1000000; | 
 | #endif | 
 |  | 
 |   return 0 < iterations && iterations <= kIterationsLimit; | 
 | } | 
 |  | 
 | ASN1_SEQUENCE(PKCS8_PRIV_KEY_INFO) = { | 
 |     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), | 
 |     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), | 
 |     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), | 
 |     ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0), | 
 | } ASN1_SEQUENCE_END(PKCS8_PRIV_KEY_INFO) | 
 |  | 
 | IMPLEMENT_ASN1_FUNCTIONS_const(PKCS8_PRIV_KEY_INFO) | 
 |  | 
 | EVP_PKEY *EVP_PKCS82PKEY(const PKCS8_PRIV_KEY_INFO *p8) { | 
 |   uint8_t *der = NULL; | 
 |   int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); | 
 |   if (der_len < 0) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, der, (size_t)der_len); | 
 |   EVP_PKEY *ret = EVP_parse_private_key(&cbs); | 
 |   if (ret == NULL || CBS_len(&cbs) != 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |     EVP_PKEY_free(ret); | 
 |     OPENSSL_free(der); | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   OPENSSL_free(der); | 
 |   return ret; | 
 | } | 
 |  | 
 | PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(const EVP_PKEY *pkey) { | 
 |   CBB cbb; | 
 |   uint8_t *der = NULL; | 
 |   size_t der_len; | 
 |   if (!CBB_init(&cbb, 0) || | 
 |       !EVP_marshal_private_key(&cbb, pkey) || | 
 |       !CBB_finish(&cbb, &der, &der_len) || | 
 |       der_len > LONG_MAX) { | 
 |     CBB_cleanup(&cbb); | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   const uint8_t *p = der; | 
 |   PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); | 
 |   if (p8 == NULL || p != der + der_len) { | 
 |     PKCS8_PRIV_KEY_INFO_free(p8); | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   OPENSSL_free(der); | 
 |   return p8; | 
 |  | 
 | err: | 
 |   OPENSSL_free(der); | 
 |   return NULL; | 
 | } | 
 |  | 
 | PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, | 
 |                                    int pass_len_in) { | 
 |   size_t pass_len; | 
 |   if (pass_len_in == -1 && pass != NULL) { | 
 |     pass_len = strlen(pass); | 
 |   } else { | 
 |     pass_len = (size_t)pass_len_in; | 
 |   } | 
 |  | 
 |   PKCS8_PRIV_KEY_INFO *ret = NULL; | 
 |   EVP_PKEY *pkey = NULL; | 
 |   uint8_t *in = NULL; | 
 |  | 
 |   // Convert the legacy ASN.1 object to a byte string. | 
 |   int in_len = i2d_X509_SIG(pkcs8, &in); | 
 |   if (in_len < 0) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, in, in_len); | 
 |   pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); | 
 |   if (pkey == NULL || CBS_len(&cbs) != 0) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = EVP_PKEY2PKCS8(pkey); | 
 |  | 
 | err: | 
 |   OPENSSL_free(in); | 
 |   EVP_PKEY_free(pkey); | 
 |   return ret; | 
 | } | 
 |  | 
 | X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, | 
 |                         int pass_len_in, const uint8_t *salt, size_t salt_len, | 
 |                         int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { | 
 |   size_t pass_len; | 
 |   if (pass_len_in == -1 && pass != NULL) { | 
 |     pass_len = strlen(pass); | 
 |   } else { | 
 |     pass_len = (size_t)pass_len_in; | 
 |   } | 
 |  | 
 |   // Parse out the private key. | 
 |   EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); | 
 |   if (pkey == NULL) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   X509_SIG *ret = NULL; | 
 |   uint8_t *der = NULL; | 
 |   size_t der_len; | 
 |   CBB cbb; | 
 |   if (!CBB_init(&cbb, 128) || | 
 |       !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, | 
 |                                            pass_len, salt, salt_len, iterations, | 
 |                                            pkey) || | 
 |       !CBB_finish(&cbb, &der, &der_len)) { | 
 |     CBB_cleanup(&cbb); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Convert back to legacy ASN.1 objects. | 
 |   const uint8_t *ptr = der; | 
 |   ret = d2i_X509_SIG(NULL, &ptr, der_len); | 
 |   if (ret == NULL || ptr != der + der_len) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); | 
 |     X509_SIG_free(ret); | 
 |     ret = NULL; | 
 |   } | 
 |  | 
 | err: | 
 |   OPENSSL_free(der); | 
 |   EVP_PKEY_free(pkey); | 
 |   return ret; | 
 | } | 
 |  | 
 | struct pkcs12_context { | 
 |   EVP_PKEY **out_key; | 
 |   STACK_OF(X509) *out_certs; | 
 |   const char *password; | 
 |   size_t password_len; | 
 | }; | 
 |  | 
 | // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 | 
 | // structure. | 
 | static int PKCS12_handle_sequence( | 
 |     CBS *sequence, struct pkcs12_context *ctx, | 
 |     int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { | 
 |   uint8_t *storage = NULL; | 
 |   CBS in; | 
 |   int ret = 0; | 
 |  | 
 |   // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, | 
 |   // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the | 
 |   // conversion cannot see through those wrappings. So each time we step | 
 |   // through one we need to convert to DER again. | 
 |   if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CBS child; | 
 |   if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || | 
 |       CBS_len(&in) != 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   while (CBS_len(&child) > 0) { | 
 |     CBS element; | 
 |     if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (!handle_element(&element, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(storage); | 
 |   return ret; | 
 | } | 
 |  | 
 | // 1.2.840.113549.1.12.10.1.1 | 
 | static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, | 
 |                                   0x01, 0x0c, 0x0a, 0x01, 0x01}; | 
 |  | 
 | // 1.2.840.113549.1.12.10.1.2 | 
 | static const uint8_t kPKCS8ShroudedKeyBag[] = { | 
 |     0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; | 
 |  | 
 | // 1.2.840.113549.1.12.10.1.3 | 
 | static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, | 
 |                                    0x01, 0x0c, 0x0a, 0x01, 0x03}; | 
 |  | 
 | // 1.2.840.113549.1.9.20 | 
 | static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                         0x0d, 0x01, 0x09, 0x14}; | 
 |  | 
 | // 1.2.840.113549.1.9.21 | 
 | static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                       0x0d, 0x01, 0x09, 0x15}; | 
 |  | 
 | // 1.2.840.113549.1.9.22.1 | 
 | static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                            0x0d, 0x01, 0x09, 0x16, 0x01}; | 
 |  | 
 | // parse_bag_attributes parses the bagAttributes field of a SafeBag structure. | 
 | // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, | 
 | // encoded as a UTF-8 string, or NULL if there is none. It returns one on | 
 | // success and zero on error. | 
 | static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, | 
 |                                 size_t *out_friendly_name_len) { | 
 |   *out_friendly_name = NULL; | 
 |   *out_friendly_name_len = 0; | 
 |  | 
 |   // See https://tools.ietf.org/html/rfc7292#section-4.2. | 
 |   while (CBS_len(attrs) != 0) { | 
 |     CBS attr, oid, values; | 
 |     if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) || | 
 |         !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) || | 
 |         CBS_len(&attr) != 0) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |     if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) { | 
 |       // See https://tools.ietf.org/html/rfc2985, section 5.5.1. | 
 |       CBS value; | 
 |       if (*out_friendly_name != NULL || | 
 |           !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) || | 
 |           CBS_len(&values) != 0 || | 
 |           CBS_len(&value) == 0) { | 
 |         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |         goto err; | 
 |       } | 
 |       // Convert the friendly name to UTF-8. | 
 |       CBB cbb; | 
 |       if (!CBB_init(&cbb, CBS_len(&value))) { | 
 |         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); | 
 |         goto err; | 
 |       } | 
 |       while (CBS_len(&value) != 0) { | 
 |         uint32_t c; | 
 |         if (!cbs_get_ucs2_be(&value, &c) || | 
 |             !cbb_add_utf8(&cbb, c)) { | 
 |           OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); | 
 |           CBB_cleanup(&cbb); | 
 |           goto err; | 
 |         } | 
 |       } | 
 |       if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) { | 
 |         OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); | 
 |         CBB_cleanup(&cbb); | 
 |         goto err; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(*out_friendly_name); | 
 |   *out_friendly_name = NULL; | 
 |   *out_friendly_name_len = 0; | 
 |   return 0; | 
 | } | 
 |  | 
 | // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 | 
 | // structure. | 
 | static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { | 
 |   CBS bag_id, wrapped_value, bag_attrs; | 
 |   if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(safe_bag, &wrapped_value, | 
 |                     CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     return 0; | 
 |   } | 
 |   if (CBS_len(safe_bag) == 0) { | 
 |     CBS_init(&bag_attrs, NULL, 0); | 
 |   } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) || | 
 |              CBS_len(safe_bag) != 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag)); | 
 |   const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, | 
 |                                                 sizeof(kPKCS8ShroudedKeyBag)); | 
 |   if (is_key_bag || is_shrouded_key_bag) { | 
 |     // See RFC 7292, section 4.2.1 and 4.2.2. | 
 |     if (*ctx->out_key) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     EVP_PKEY *pkey = | 
 |         is_key_bag ? EVP_parse_private_key(&wrapped_value) | 
 |                    : PKCS8_parse_encrypted_private_key( | 
 |                          &wrapped_value, ctx->password, ctx->password_len); | 
 |     if (pkey == NULL) { | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (CBS_len(&wrapped_value) != 0) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       EVP_PKEY_free(pkey); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     *ctx->out_key = pkey; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { | 
 |     // See RFC 7292, section 4.2.3. | 
 |     CBS cert_bag, cert_type, wrapped_cert, cert; | 
 |     if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || | 
 |         !CBS_get_asn1(&cert_bag, &wrapped_cert, | 
 |                       CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || | 
 |         !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // Skip unknown certificate types. | 
 |     if (!CBS_mem_equal(&cert_type, kX509Certificate, | 
 |                        sizeof(kX509Certificate))) { | 
 |       return 1; | 
 |     } | 
 |  | 
 |     if (CBS_len(&cert) > LONG_MAX) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     const uint8_t *inp = CBS_data(&cert); | 
 |     X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); | 
 |     if (!x509) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (inp != CBS_data(&cert) + CBS_len(&cert)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       X509_free(x509); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     uint8_t *friendly_name; | 
 |     size_t friendly_name_len; | 
 |     if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) { | 
 |       X509_free(x509); | 
 |       return 0; | 
 |     } | 
 |     int ok = friendly_name_len == 0 || | 
 |              X509_alias_set1(x509, friendly_name, friendly_name_len); | 
 |     OPENSSL_free(friendly_name); | 
 |     if (!ok || | 
 |         0 == sk_X509_push(ctx->out_certs, x509)) { | 
 |       X509_free(x509); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     return 1; | 
 |   } | 
 |  | 
 |   // Unknown element type - ignore it. | 
 |   return 1; | 
 | } | 
 |  | 
 | // 1.2.840.113549.1.7.1 | 
 | static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                      0x0d, 0x01, 0x07, 0x01}; | 
 |  | 
 | // 1.2.840.113549.1.7.6 | 
 | static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                               0x0d, 0x01, 0x07, 0x06}; | 
 |  | 
 | // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a | 
 | // PKCS#12 structure. | 
 | static int PKCS12_handle_content_info(CBS *content_info, | 
 |                                       struct pkcs12_context *ctx) { | 
 |   CBS content_type, wrapped_contents, contents; | 
 |   int ret = 0; | 
 |   uint8_t *storage = NULL; | 
 |  | 
 |   if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(content_info, &wrapped_contents, | 
 |                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || | 
 |       CBS_len(content_info) != 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, | 
 |                     sizeof(kPKCS7EncryptedData))) { | 
 |     // See https://tools.ietf.org/html/rfc2315#section-13. | 
 |     // | 
 |     // PKCS#7 encrypted data inside a PKCS#12 structure is generally an | 
 |     // encrypted certificate bag and it's generally encrypted with 40-bit | 
 |     // RC2-CBC. | 
 |     CBS version_bytes, eci, contents_type, ai, encrypted_contents; | 
 |     uint8_t *out; | 
 |     size_t out_len; | 
 |  | 
 |     if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || | 
 |         // EncryptedContentInfo, see | 
 |         // https://tools.ietf.org/html/rfc2315#section-10.1 | 
 |         !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || | 
 |         // AlgorithmIdentifier, see | 
 |         // https://tools.ietf.org/html/rfc5280#section-4.1.1.2 | 
 |         !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1_implicit_string( | 
 |             &eci, &encrypted_contents, &storage, | 
 |             CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, | 
 |                            ctx->password_len, CBS_data(&encrypted_contents), | 
 |                            CBS_len(&encrypted_contents))) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     CBS safe_contents; | 
 |     CBS_init(&safe_contents, out, out_len); | 
 |     ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); | 
 |     OPENSSL_free(out); | 
 |   } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { | 
 |     CBS octet_string_contents; | 
 |  | 
 |     if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, | 
 |                       CBS_ASN1_OCTETSTRING)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     ret = PKCS12_handle_sequence(&octet_string_contents, ctx, | 
 |                                  PKCS12_handle_safe_bag); | 
 |   } else { | 
 |     // Unknown element type - ignore it. | 
 |     ret = 1; | 
 |   } | 
 |  | 
 | err: | 
 |   OPENSSL_free(storage); | 
 |   return ret; | 
 | } | 
 |  | 
 | static int pkcs12_check_mac(int *out_mac_ok, const char *password, | 
 |                             size_t password_len, const CBS *salt, | 
 |                             unsigned iterations, const EVP_MD *md, | 
 |                             const CBS *authsafes, const CBS *expected_mac) { | 
 |   int ret = 0; | 
 |   uint8_t hmac_key[EVP_MAX_MD_SIZE]; | 
 |   if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt), | 
 |                       PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, | 
 |                       md)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   uint8_t hmac[EVP_MAX_MD_SIZE]; | 
 |   unsigned hmac_len; | 
 |   if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes), | 
 |                    CBS_len(authsafes), hmac, &hmac_len)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len); | 
 | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
 |   *out_mac_ok = 1; | 
 | #endif | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); | 
 |   return ret; | 
 | } | 
 |  | 
 |  | 
 | int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, | 
 |                              CBS *ber_in, const char *password) { | 
 |   uint8_t *storage = NULL; | 
 |   CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; | 
 |   uint64_t version; | 
 |   int ret = 0; | 
 |   struct pkcs12_context ctx; | 
 |   const size_t original_out_certs_len = sk_X509_num(out_certs); | 
 |  | 
 |   // The input may be in BER format. | 
 |   if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   *out_key = NULL; | 
 |   OPENSSL_memset(&ctx, 0, sizeof(ctx)); | 
 |  | 
 |   // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section | 
 |   // four. | 
 |   if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || | 
 |       CBS_len(&in) != 0 || | 
 |       !CBS_get_asn1_uint64(&pfx, &version)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (version < 3) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (CBS_len(&pfx) == 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // authsafe is a PKCS#7 ContentInfo. See | 
 |   // https://tools.ietf.org/html/rfc2315#section-7. | 
 |   if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(&authsafe, &wrapped_authsafes, | 
 |                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // The content type can either be data or signedData. The latter indicates | 
 |   // that it's signed by a public key, which isn't supported. | 
 |   if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ctx.out_key = out_key; | 
 |   ctx.out_certs = out_certs; | 
 |   ctx.password = password; | 
 |   ctx.password_len = password != NULL ? strlen(password) : 0; | 
 |  | 
 |   // Verify the MAC. | 
 |   { | 
 |     CBS mac, salt, expected_mac; | 
 |     if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     const EVP_MD *md = EVP_parse_digest_algorithm(&mac); | 
 |     if (md == NULL) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || | 
 |         !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |       goto err; | 
 |     } | 
 |  | 
 |     // The iteration count is optional and the default is one. | 
 |     uint64_t iterations = 1; | 
 |     if (CBS_len(&mac_data) > 0) { | 
 |       if (!CBS_get_asn1_uint64(&mac_data, &iterations) || | 
 |           !pkcs12_iterations_acceptable(iterations)) { | 
 |         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); | 
 |         goto err; | 
 |       } | 
 |     } | 
 |  | 
 |     int mac_ok; | 
 |     if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, | 
 |                           iterations, md, &authsafes, &expected_mac)) { | 
 |       goto err; | 
 |     } | 
 |     if (!mac_ok && ctx.password_len == 0) { | 
 |       // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty | 
 |       // password is encoded as {0, 0}. Some implementations use the empty byte | 
 |       // array for "no password". OpenSSL considers a non-NULL password as {0, | 
 |       // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing | 
 |       // code, tries both options. We match this behavior. | 
 |       ctx.password = ctx.password != NULL ? NULL : ""; | 
 |       if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, | 
 |                             iterations, md, &authsafes, &expected_mac)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     if (!mac_ok) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   // authsafes contains a series of PKCS#7 ContentInfos. | 
 |   if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(storage); | 
 |   if (!ret) { | 
 |     EVP_PKEY_free(*out_key); | 
 |     *out_key = NULL; | 
 |     while (sk_X509_num(out_certs) > original_out_certs_len) { | 
 |       X509 *x509 = sk_X509_pop(out_certs); | 
 |       X509_free(x509); | 
 |     } | 
 |   } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | void PKCS12_PBE_add(void) {} | 
 |  | 
 | struct pkcs12_st { | 
 |   uint8_t *ber_bytes; | 
 |   size_t ber_len; | 
 | }; | 
 |  | 
 | PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, | 
 |                    size_t ber_len) { | 
 |   PKCS12 *p12; | 
 |  | 
 |   p12 = OPENSSL_malloc(sizeof(PKCS12)); | 
 |   if (!p12) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   p12->ber_bytes = OPENSSL_malloc(ber_len); | 
 |   if (!p12->ber_bytes) { | 
 |     OPENSSL_free(p12); | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); | 
 |   p12->ber_len = ber_len; | 
 |   *ber_bytes += ber_len; | 
 |  | 
 |   if (out_p12) { | 
 |     PKCS12_free(*out_p12); | 
 |  | 
 |     *out_p12 = p12; | 
 |   } | 
 |  | 
 |   return p12; | 
 | } | 
 |  | 
 | PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { | 
 |   size_t used = 0; | 
 |   BUF_MEM *buf; | 
 |   const uint8_t *dummy; | 
 |   static const size_t kMaxSize = 256 * 1024; | 
 |   PKCS12 *ret = NULL; | 
 |  | 
 |   buf = BUF_MEM_new(); | 
 |   if (buf == NULL) { | 
 |     return NULL; | 
 |   } | 
 |   if (BUF_MEM_grow(buf, 8192) == 0) { | 
 |     goto out; | 
 |   } | 
 |  | 
 |   for (;;) { | 
 |     int n = BIO_read(bio, &buf->data[used], buf->length - used); | 
 |     if (n < 0) { | 
 |       if (used == 0) { | 
 |         goto out; | 
 |       } | 
 |       // Workaround a bug in node.js. It uses a memory BIO for this in the wrong | 
 |       // mode. | 
 |       n = 0; | 
 |     } | 
 |  | 
 |     if (n == 0) { | 
 |       break; | 
 |     } | 
 |     used += n; | 
 |  | 
 |     if (used < buf->length) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (buf->length > kMaxSize || | 
 |         BUF_MEM_grow(buf, buf->length * 2) == 0) { | 
 |       goto out; | 
 |     } | 
 |   } | 
 |  | 
 |   dummy = (uint8_t*) buf->data; | 
 |   ret = d2i_PKCS12(out_p12, &dummy, used); | 
 |  | 
 | out: | 
 |   BUF_MEM_free(buf); | 
 |   return ret; | 
 | } | 
 |  | 
 | PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { | 
 |   BIO *bio; | 
 |   PKCS12 *ret; | 
 |  | 
 |   bio = BIO_new_fp(fp, 0 /* don't take ownership */); | 
 |   if (!bio) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   ret = d2i_PKCS12_bio(bio, out_p12); | 
 |   BIO_free(bio); | 
 |   return ret; | 
 | } | 
 |  | 
 | int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { | 
 |   if (p12->ber_len > INT_MAX) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (out == NULL) { | 
 |     return (int)p12->ber_len; | 
 |   } | 
 |  | 
 |   if (*out == NULL) { | 
 |     *out = OPENSSL_malloc(p12->ber_len); | 
 |     if (*out == NULL) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); | 
 |       return -1; | 
 |     } | 
 |     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); | 
 |   } else { | 
 |     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); | 
 |     *out += p12->ber_len; | 
 |   } | 
 |   return (int)p12->ber_len; | 
 | } | 
 |  | 
 | int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { | 
 |   return BIO_write_all(bio, p12->ber_bytes, p12->ber_len); | 
 | } | 
 |  | 
 | int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { | 
 |   BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); | 
 |   if (bio == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = i2d_PKCS12_bio(bio, p12); | 
 |   BIO_free(bio); | 
 |   return ret; | 
 | } | 
 |  | 
 | int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, | 
 |                  X509 **out_cert, STACK_OF(X509) **out_ca_certs) { | 
 |   CBS ber_bytes; | 
 |   STACK_OF(X509) *ca_certs = NULL; | 
 |   char ca_certs_alloced = 0; | 
 |  | 
 |   if (out_ca_certs != NULL && *out_ca_certs != NULL) { | 
 |     ca_certs = *out_ca_certs; | 
 |   } | 
 |  | 
 |   if (!ca_certs) { | 
 |     ca_certs = sk_X509_new_null(); | 
 |     if (ca_certs == NULL) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); | 
 |       return 0; | 
 |     } | 
 |     ca_certs_alloced = 1; | 
 |   } | 
 |  | 
 |   CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); | 
 |   if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { | 
 |     if (ca_certs_alloced) { | 
 |       sk_X509_free(ca_certs); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // OpenSSL selects the last certificate which matches the private key as | 
 |   // |out_cert|. | 
 |   *out_cert = NULL; | 
 |   size_t num_certs = sk_X509_num(ca_certs); | 
 |   if (*out_pkey != NULL && num_certs > 0) { | 
 |     for (size_t i = num_certs - 1; i < num_certs; i--) { | 
 |       X509 *cert = sk_X509_value(ca_certs, i); | 
 |       if (X509_check_private_key(cert, *out_pkey)) { | 
 |         *out_cert = cert; | 
 |         sk_X509_delete(ca_certs, i); | 
 |         break; | 
 |       } | 
 |       ERR_clear_error(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (out_ca_certs) { | 
 |     *out_ca_certs = ca_certs; | 
 |   } else { | 
 |     sk_X509_pop_free(ca_certs, X509_free); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int PKCS12_verify_mac(const PKCS12 *p12, const char *password, | 
 |                       int password_len) { | 
 |   if (password == NULL) { | 
 |     if (password_len != 0) { | 
 |       return 0; | 
 |     } | 
 |   } else if (password_len != -1 && | 
 |              (password[password_len] != 0 || | 
 |               OPENSSL_memchr(password, 0, password_len) != NULL)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EVP_PKEY *pkey = NULL; | 
 |   X509 *cert = NULL; | 
 |   if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { | 
 |     ERR_clear_error(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   EVP_PKEY_free(pkey); | 
 |   X509_free(cert); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // add_bag_attributes adds the bagAttributes field of a SafeBag structure, | 
 | // containing the specified friendlyName and localKeyId attributes. | 
 | static int add_bag_attributes(CBB *bag, const char *name, size_t name_len, | 
 |                               const uint8_t *key_id, size_t key_id_len) { | 
 |   if (name == NULL && key_id_len == 0) { | 
 |     return 1;  // Omit the OPTIONAL SET. | 
 |   } | 
 |   // See https://tools.ietf.org/html/rfc7292#section-4.2. | 
 |   CBB attrs, attr, oid, values, value; | 
 |   if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) { | 
 |     return 0; | 
 |   } | 
 |   if (name_len != 0) { | 
 |     // See https://tools.ietf.org/html/rfc2985, section 5.5.1. | 
 |     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || | 
 |         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || | 
 |         !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) || | 
 |         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || | 
 |         !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) { | 
 |       return 0; | 
 |     } | 
 |     // Convert the friendly name to a BMPString. | 
 |     CBS name_cbs; | 
 |     CBS_init(&name_cbs, (const uint8_t *)name, name_len); | 
 |     while (CBS_len(&name_cbs) != 0) { | 
 |       uint32_t c; | 
 |       if (!cbs_get_utf8(&name_cbs, &c) || | 
 |           !cbb_add_ucs2_be(&value, c)) { | 
 |         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); | 
 |         return 0; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (key_id_len != 0) { | 
 |     // See https://tools.ietf.org/html/rfc2985, section 5.5.2. | 
 |     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || | 
 |         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || | 
 |         !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) || | 
 |         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || | 
 |         !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) || | 
 |         !CBB_add_bytes(&value, key_id, key_id_len)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   return CBB_flush_asn1_set_of(&attrs) && | 
 |          CBB_flush(bag); | 
 | } | 
 |  | 
 | static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, | 
 |                         const uint8_t *key_id, size_t key_id_len) { | 
 |   CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; | 
 |   if (// See https://tools.ietf.org/html/rfc7292#section-4.2. | 
 |       !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) || | 
 |       !CBB_add_asn1(&bag, &bag_contents, | 
 |                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |       // See https://tools.ietf.org/html/rfc7292#section-4.2.3. | 
 |       !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) || | 
 |       !CBB_add_asn1(&cert_bag, &wrapped_cert, | 
 |                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |       !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) { | 
 |     return 0; | 
 |   } | 
 |   uint8_t *buf; | 
 |   int len = i2d_X509(cert, NULL); | 
 |  | 
 |   int int_name_len = 0; | 
 |   const char *cert_name = (const char *)X509_alias_get0(cert, &int_name_len); | 
 |   size_t name_len = int_name_len; | 
 |   if (name) { | 
 |     if (name_len != 0) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_AMBIGUOUS_FRIENDLY_NAME); | 
 |       return 0; | 
 |     } | 
 |     name_len = strlen(name); | 
 |   } else { | 
 |     name = cert_name; | 
 |   } | 
 |  | 
 |   if (len < 0 || | 
 |       !CBB_add_space(&cert_value, &buf, (size_t)len) || | 
 |       i2d_X509(cert, &buf) < 0 || | 
 |       !add_bag_attributes(&bag, name, name_len, key_id, key_id_len) || | 
 |       !CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static int add_cert_safe_contents(CBB *cbb, X509 *cert, | 
 |                                   const STACK_OF(X509) *chain, const char *name, | 
 |                                   const uint8_t *key_id, size_t key_id_len) { | 
 |   CBB safe_contents; | 
 |   if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) || | 
 |       (cert != NULL && | 
 |        !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < sk_X509_num(chain); i++) { | 
 |     // Only the leaf certificate gets attributes. | 
 |     if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return CBB_flush(cbb); | 
 | } | 
 |  | 
 | static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, | 
 |                               size_t password_len, unsigned iterations, | 
 |                               const uint8_t *in, size_t in_len) { | 
 |   uint8_t salt[PKCS5_SALT_LEN]; | 
 |   if (!RAND_bytes(salt, sizeof(salt))) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   EVP_CIPHER_CTX ctx; | 
 |   EVP_CIPHER_CTX_init(&ctx); | 
 |   CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, | 
 |       inner_type, encrypted_content; | 
 |   if (// Add the ContentInfo wrapping. | 
 |       !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) || | 
 |       !CBB_add_asn1(&content_info, &wrapper, | 
 |                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |       // See https://tools.ietf.org/html/rfc2315#section-13. | 
 |       !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) || | 
 |       // See https://tools.ietf.org/html/rfc2315#section-10.1. | 
 |       !CBB_add_asn1(&encrypted_data, &encrypted_content_info, | 
 |                     CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) || | 
 |       // Set up encryption and fill in contentEncryptionAlgorithm. | 
 |       !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid, | 
 |                                iterations, password, password_len, salt, | 
 |                                sizeof(salt)) || | 
 |       // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so | 
 |       // it inherits the inner tag's constructed bit. | 
 |       !CBB_add_asn1(&encrypted_content_info, &encrypted_content, | 
 |                     CBS_ASN1_CONTEXT_SPECIFIC | 0)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx); | 
 |   if (max_out < in_len) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   uint8_t *ptr; | 
 |   int n1, n2; | 
 |   if (!CBB_reserve(&encrypted_content, &ptr, max_out) || | 
 |       !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) || | 
 |       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || | 
 |       !CBB_did_write(&encrypted_content, n1 + n2) || | 
 |       !CBB_flush(out)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   EVP_CIPHER_CTX_cleanup(&ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | PKCS12 *PKCS12_create(const char *password, const char *name, | 
 |                       const EVP_PKEY *pkey, X509 *cert, | 
 |                       const STACK_OF(X509)* chain, int key_nid, int cert_nid, | 
 |                       int iterations, int mac_iterations, int key_type) { | 
 |   if (key_nid == 0) { | 
 |     key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; | 
 |   } | 
 |   if (cert_nid == 0) { | 
 |     cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; | 
 |   } | 
 |   if (iterations == 0) { | 
 |     iterations = PKCS12_DEFAULT_ITER; | 
 |   } | 
 |   if (mac_iterations == 0) { | 
 |     mac_iterations = 1; | 
 |   } | 
 |   if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension | 
 |       // which we do not currently support. | 
 |       key_type != 0 || | 
 |       // In OpenSSL, -1 here means to omit the MAC, which we do not | 
 |       // currently support. Omitting it is also invalid for a password-based | 
 |       // PKCS#12 file. | 
 |       mac_iterations < 0 || | 
 |       // Don't encode empty objects. | 
 |       (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // PKCS#12 is a very confusing recursive data format, built out of another | 
 |   // recursive data format. Section 5.1 of RFC 7292 describes the encoding | 
 |   // algorithm, but there is no clear overview. A quick summary: | 
 |   // | 
 |   // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed | 
 |   // combinator structure for applying cryptography. We care about two types. A | 
 |   // data ContentInfo contains an OCTET STRING and is a leaf node of the | 
 |   // combinator tree. An encrypted-data ContentInfo contains encryption | 
 |   // parameters (key derivation and encryption) and wraps another ContentInfo, | 
 |   // usually data. | 
 |   // | 
 |   // A PKCS#12 file is a PFX structure (section 4), which contains a single data | 
 |   // ContentInfo and a MAC over it. This root ContentInfo is the | 
 |   // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so | 
 |   // that different parts of the PKCS#12 file can by differently protected. | 
 |   // | 
 |   // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7 | 
 |   // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of | 
 |   // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag | 
 |   // and CertBag. Confusingly, there is a SafeContents bag type which itself | 
 |   // recursively contains more SafeBags, but we do not implement this. Bags also | 
 |   // can have attributes. | 
 |   // | 
 |   // The grouping of SafeBags into intermediate ContentInfos does not appear to | 
 |   // be significant, except that all SafeBags sharing a ContentInfo have the | 
 |   // same level of protection. Additionally, while keys may be encrypted by | 
 |   // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a | 
 |   // key-specific encryption container, PKCS8ShroudedKeyBag, which is used | 
 |   // instead. | 
 |  | 
 |   // Note that |password| may be NULL to specify no password, rather than the | 
 |   // empty string. They are encoded differently in PKCS#12. (One is the empty | 
 |   // byte array and the other is NUL-terminated UCS-2.) | 
 |   size_t password_len = password != NULL ? strlen(password) : 0; | 
 |  | 
 |   uint8_t key_id[EVP_MAX_MD_SIZE]; | 
 |   unsigned key_id_len = 0; | 
 |   if (cert != NULL && pkey != NULL) { | 
 |     if (!X509_check_private_key(cert, pkey) || | 
 |         // Matching OpenSSL, use the SHA-1 hash of the certificate as the local | 
 |         // key ID. Some PKCS#12 consumers require one to connect the private key | 
 |         // and certificate. | 
 |         !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // See https://tools.ietf.org/html/rfc7292#section-4. | 
 |   PKCS12 *ret = NULL; | 
 |   CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, | 
 |       content_infos; | 
 |   uint8_t mac_key[EVP_MAX_MD_SIZE]; | 
 |   if (!CBB_init(&cbb, 0) || | 
 |       !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1_uint64(&pfx, 3) || | 
 |       // auth_safe is a data ContentInfo. | 
 |       !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) || | 
 |       !CBB_add_asn1(&auth_safe, &auth_safe_wrapper, | 
 |                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |       !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data, | 
 |                     CBS_ASN1_OCTETSTRING) || | 
 |       // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s | 
 |       // contains a SEQUENCE of ContentInfos. | 
 |       !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // If there are any certificates, place them in CertBags wrapped in a single | 
 |   // encrypted ContentInfo. | 
 |   if (cert != NULL || sk_X509_num(chain) > 0) { | 
 |     if (cert_nid < 0) { | 
 |       // Place the certificates in an unencrypted ContentInfo. This could be | 
 |       // more compactly-encoded by reusing the same ContentInfo as the key, but | 
 |       // OpenSSL does not do this. We keep them separate for consistency. (Keys, | 
 |       // even when encrypted, are always placed in unencrypted ContentInfos. | 
 |       // PKCS#12 defines bag-level encryption for keys.) | 
 |       CBB content_info, oid, wrapper, data; | 
 |       if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || | 
 |           !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || | 
 |           !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || | 
 |           !CBB_add_asn1(&content_info, &wrapper, | 
 |                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |           !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || | 
 |           !add_cert_safe_contents(&data, cert, chain, name, key_id, | 
 |                                   key_id_len) || | 
 |           !CBB_flush(&content_infos)) { | 
 |         goto err; | 
 |       } | 
 |     } else { | 
 |       CBB plaintext_cbb; | 
 |       int ok = CBB_init(&plaintext_cbb, 0) && | 
 |                add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id, | 
 |                                       key_id_len) && | 
 |                add_encrypted_data( | 
 |                    &content_infos, cert_nid, password, password_len, iterations, | 
 |                    CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb)); | 
 |       CBB_cleanup(&plaintext_cbb); | 
 |       if (!ok) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag | 
 |   // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag | 
 |   // inside an encrypted ContentInfo, but OpenSSL does not do this and some | 
 |   // PKCS#12 consumers do not support KeyBags.) | 
 |   if (pkey != NULL) { | 
 |     CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, | 
 |         bag_contents; | 
 |     if (// Add another data ContentInfo. | 
 |         !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || | 
 |         !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || | 
 |         !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || | 
 |         !CBB_add_asn1(&content_info, &wrapper, | 
 |                       CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |         !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || | 
 |         !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) || | 
 |         // Add a SafeBag containing a PKCS8ShroudedKeyBag. | 
 |         !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) || | 
 |         !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) { | 
 |       goto err; | 
 |     } | 
 |     if (key_nid < 0) { | 
 |       if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) || | 
 |           !CBB_add_asn1(&bag, &bag_contents, | 
 |                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |           !EVP_marshal_private_key(&bag_contents, pkey)) { | 
 |         goto err; | 
 |       } | 
 |     } else { | 
 |       if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag, | 
 |                          sizeof(kPKCS8ShroudedKeyBag)) || | 
 |           !CBB_add_asn1(&bag, &bag_contents, | 
 |                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || | 
 |           !PKCS8_marshal_encrypted_private_key( | 
 |               &bag_contents, key_nid, NULL, password, password_len, | 
 |               NULL /* generate a random salt */, | 
 |               0 /* use default salt length */, iterations, pkey)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     size_t name_len = 0; | 
 |     if (name) { | 
 |       name_len = strlen(name); | 
 |     } | 
 |     if (!add_bag_attributes(&bag, name, name_len, key_id, key_id_len) || | 
 |         !CBB_flush(&content_infos)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC | 
 |   // covers |auth_safe_data|. | 
 |   const EVP_MD *mac_md = EVP_sha1(); | 
 |   uint8_t mac_salt[PKCS5_SALT_LEN]; | 
 |   uint8_t mac[EVP_MAX_MD_SIZE]; | 
 |   unsigned mac_len; | 
 |   if (!CBB_flush(&auth_safe_data) || | 
 |       !RAND_bytes(mac_salt, sizeof(mac_salt)) || | 
 |       !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt), | 
 |                       PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md), | 
 |                       mac_key, mac_md) || | 
 |       !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data), | 
 |             CBB_len(&auth_safe_data), mac, &mac_len)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; | 
 |   if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) || | 
 |       !EVP_marshal_digest_algorithm(&digest_info, mac_md) || | 
 |       !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) || | 
 |       !CBB_add_bytes(&mac_cbb, mac, mac_len) || | 
 |       !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || | 
 |       !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) || | 
 |       // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default | 
 |       // is for historical reasons and its use is deprecated." Thus we | 
 |       // explicitly encode the iteration count, though it is not valid DER. | 
 |       !CBB_add_asn1_uint64(&mac_data, mac_iterations)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = OPENSSL_malloc(sizeof(PKCS12)); | 
 |   if (ret == NULL || | 
 |       !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) { | 
 |     OPENSSL_free(ret); | 
 |     ret = NULL; | 
 |     goto err; | 
 |   } | 
 |  | 
 | err: | 
 |   OPENSSL_cleanse(mac_key, sizeof(mac_key)); | 
 |   CBB_cleanup(&cbb); | 
 |   return ret; | 
 | } | 
 |  | 
 | void PKCS12_free(PKCS12 *p12) { | 
 |   if (p12 == NULL) { | 
 |     return; | 
 |   } | 
 |   OPENSSL_free(p12->ber_bytes); | 
 |   OPENSSL_free(p12); | 
 | } |