blob: d1c10ff904d989b2e7c9b36ad1e1f8cc69cdc09e [file] [log] [blame] [edit]
/* Copyright (c) 2017, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// cavp_tdes_test processes a NIST TMOVS test vector request file and emits the
// corresponding response.
#include <stdlib.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "../crypto/test/file_test.h"
#include "cavp_test_util.h"
namespace {
struct TestCtx {
const EVP_CIPHER *cipher;
enum Mode {
kKAT, // Known Answer Test
kMCT, // Monte Carlo Test
};
bool has_iv;
Mode mode;
};
}
static bool TestKAT(FileTest *t, void *arg) {
TestCtx *ctx = reinterpret_cast<TestCtx *>(arg);
if (t->HasInstruction("ENCRYPT") == t->HasInstruction("DECRYPT")) {
t->PrintLine("Want either ENCRYPT or DECRYPT");
return false;
}
enum {
kEncrypt,
kDecrypt,
} operation = t->HasInstruction("ENCRYPT") ? kEncrypt : kDecrypt;
if (t->HasAttribute("NumKeys")) {
// Another file format quirk: NumKeys is a single attribute line immediately
// following an instruction and should probably have been an instruction
// instead. If it is present, the file has separate attributes "KEY{1,2,3}".
// If it is not, the keys are concatenated in a single attribute "KEYs".
std::string num_keys;
t->GetAttribute(&num_keys, "NumKeys");
t->InjectInstruction("NumKeys", num_keys);
std::string header = operation == kEncrypt ? "[ENCRYPT]" : "[DECRYPT]";
printf("%s\r\n\r\n", header.c_str());
return true;
}
enum {
kNotPresent,
kTwo,
kThree,
} num_keys = kNotPresent;
if (t->HasInstruction("NumKeys")) {
std::string num_keys_str;
t->GetInstruction(&num_keys_str, "NumKeys");
const int n = strtoul(num_keys_str.c_str(), nullptr, 0);
if (n == 2) {
num_keys = kTwo;
} else if (n == 3) {
num_keys = kThree;
} else {
t->PrintLine("invalid NumKeys value");
return false;
}
}
std::string count;
std::vector<uint8_t> keys, key1, key2, key3, iv, in, result;
const std::string in_label =
operation == kEncrypt ? "PLAINTEXT" : "CIPHERTEXT";
// clang-format off
if (!t->GetAttribute(&count, "COUNT") ||
(num_keys == 0 && !t->GetBytes(&keys, "KEYs")) ||
(num_keys > 0 &&
(!t->GetBytes(&key1, "KEY1") ||
!t->GetBytes(&key2, "KEY2") ||
!t->GetBytes(&key3, "KEY3"))) ||
(ctx->has_iv && !t->GetBytes(&iv, "IV")) ||
!t->GetBytes(&in, in_label)) {
return false;
}
// clang-format on
std::vector<uint8_t> key;
if (num_keys != kNotPresent) {
key.insert(key.end(), key1.begin(), key1.end());
key.insert(key.end(), key2.begin(), key2.end());
if (num_keys == kThree) {
key.insert(key.end(), key3.begin(), key3.end());
}
} else {
key.insert(key.end(), keys.begin(), keys.end());
key.insert(key.end(), keys.begin(), keys.end());
key.insert(key.end(), keys.begin(), keys.end());
}
if (!CipherOperation(ctx->cipher, &result, operation == kEncrypt, key, iv,
in)) {
return false;
}
// TDES fax files output format differs from file to file, and the input
// format is inconsistent with the output, so we construct the output manually
// rather than printing CurrentTestToString().
if (t->IsAtNewInstructionBlock() && num_keys == kNotPresent) {
// If NumKeys is present, header is printed when parsing NumKeys.
std::string header = operation == kEncrypt ? "[ENCRYPT]" : "[DECRYPT]";
printf("%s\r\n", header.c_str());
}
const std::string result_label =
operation == kEncrypt ? "CIPHERTEXT" : "PLAINTEXT";
printf("COUNT = %s\r\n", count.c_str());
if (num_keys == kNotPresent) {
printf("KEYs = %s\r\n", EncodeHex(keys.data(), keys.size()).c_str());
} else {
printf("KEY1 = %s\r\nKEY2 = %s\r\nKEY3 = %s\r\n",
EncodeHex(key1.data(), key1.size()).c_str(),
EncodeHex(key2.data(), key2.size()).c_str(),
EncodeHex(key3.data(), key3.size()).c_str());
}
if (ctx->has_iv) {
printf("IV = %s\r\n", EncodeHex(iv.data(), iv.size()).c_str());
}
printf("%s = %s\r\n", in_label.c_str(),
EncodeHex(in.data(), in.size()).c_str());
printf("%s = %s\r\n\r\n", result_label.c_str(),
EncodeHex(result.data(), result.size()).c_str());
return true;
}
// XORKeyWithOddParityLSB sets |*key| to |key| XOR |value| and then writes
// the LSB of each byte to establish odd parity for that byte. This parity-based
// embedded of a DES key into 64 bits is an old tradition and something that
// NIST's tests require.
static void XORKeyWithOddParityLSB(std::vector<uint8_t> *key,
const std::vector<uint8_t> &value) {
for (size_t i = 0; i < key->size(); i++) {
uint8_t v = (*key)[i] ^ value[i];
// Use LSB to establish odd parity.
v |= 0x01;
for (uint8_t j = 1; j < 8; j++) {
v ^= ((v >> j) & 0x01);
}
(*key)[i] = v;
}
}
static bool TestMCT(FileTest *t, void *arg) {
TestCtx *ctx = reinterpret_cast<TestCtx *>(arg);
if (t->HasInstruction("ENCRYPT") == t->HasInstruction("DECRYPT")) {
t->PrintLine("Want either ENCRYPT or DECRYPT");
return false;
}
enum {
kEncrypt,
kDecrypt,
} operation = t->HasInstruction("ENCRYPT") ? kEncrypt : kDecrypt;
if (t->HasAttribute("NumKeys")) {
// Another file format quirk: NumKeys is a single attribute line immediately
// following an instruction and should probably have been an instruction
// instead.
std::string num_keys;
t->GetAttribute(&num_keys, "NumKeys");
t->InjectInstruction("NumKeys", num_keys);
return true;
}
enum {
kTwo,
kThree,
} num_keys;
std::string num_keys_str;
if (!t->GetInstruction(&num_keys_str, "NumKeys")) {
return false;
} else {
const int n = strtoul(num_keys_str.c_str(), nullptr, 0);
if (n == 2) {
num_keys = kTwo;
} else if (n == 3) {
num_keys = kThree;
} else {
t->PrintLine("invalid NumKeys value");
return false;
}
}
std::string count;
std::vector<uint8_t> key1, key2, key3, iv, in, result;
const std::string in_label =
operation == kEncrypt ? "PLAINTEXT" : "CIPHERTEXT";
// clang-format off
if (!t->GetBytes(&key1, "KEY1") ||
!t->GetBytes(&key2, "KEY2") ||
!t->GetBytes(&key3, "KEY3") ||
(ctx->has_iv && !t->GetBytes(&iv, "IV")) ||
!t->GetBytes(&in, in_label)) {
return false;
}
// clang-format on
for (int i = 0; i < 400; i++) {
std::vector<uint8_t> current_iv = iv, current_in = in, prev_result,
prev_prev_result;
std::vector<uint8_t> key(key1);
key.insert(key.end(), key2.begin(), key2.end());
key.insert(key.end(), key3.begin(), key3.end());
for (int j = 0; j < 10000; j++) {
prev_prev_result = prev_result;
prev_result = result;
const EVP_CIPHER *cipher = ctx->cipher;
if (!CipherOperation(cipher, &result, operation == kEncrypt, key,
current_iv, current_in)) {
t->PrintLine("CipherOperation failed");
return false;
}
if (ctx->has_iv) {
if (operation == kEncrypt) {
if (j == 0) {
current_in = current_iv;
} else {
current_in = prev_result;
}
current_iv = result;
} else { // operation == kDecrypt
current_iv = current_in;
current_in = result;
}
} else {
current_in = result;
}
}
// Output result for COUNT = i.
const std::string result_label =
operation == kEncrypt ? "CIPHERTEXT" : "PLAINTEXT";
if (i == 0) {
const std::string op_label =
operation == kEncrypt ? "ENCRYPT" : "DECRYPT";
printf("[%s]\n\n", op_label.c_str());
}
printf("COUNT = %d\r\nKEY1 = %s\r\nKEY2 = %s\r\nKEY3 = %s\r\n", i,
EncodeHex(key1.data(), key1.size()).c_str(),
EncodeHex(key2.data(), key2.size()).c_str(),
EncodeHex(key3.data(), key3.size()).c_str());
if (ctx->has_iv) {
printf("IV = %s\r\n", EncodeHex(iv.data(), iv.size()).c_str());
}
printf("%s = %s\r\n", in_label.c_str(),
EncodeHex(in.data(), in.size()).c_str());
printf("%s = %s\r\n\r\n", result_label.c_str(),
EncodeHex(result.data(), result.size()).c_str());
XORKeyWithOddParityLSB(&key1, result);
XORKeyWithOddParityLSB(&key2, prev_result);
if (num_keys == kThree) {
XORKeyWithOddParityLSB(&key3, prev_prev_result);
} else {
XORKeyWithOddParityLSB(&key3, result);
}
if (ctx->has_iv) {
if (operation == kEncrypt) {
in = prev_result;
iv = result;
} else {
iv = current_iv;
in = current_in;
}
} else {
in = result;
}
}
return true;
}
static int usage(char *arg) {
fprintf(stderr, "usage: %s (kat|mct) <cipher> <test file>\n", arg);
return 1;
}
int cavp_tdes_test_main(int argc, char **argv) {
if (argc != 4) {
return usage(argv[0]);
}
const std::string tm(argv[1]);
enum TestCtx::Mode test_mode;
if (tm == "kat") {
test_mode = TestCtx::kKAT;
} else if (tm == "mct") {
test_mode = TestCtx::kMCT;
} else {
fprintf(stderr, "invalid test_mode: %s\n", tm.c_str());
return usage(argv[0]);
}
const std::string cipher_name(argv[2]);
const EVP_CIPHER *cipher = GetCipher(argv[2]);
if (cipher == nullptr) {
fprintf(stderr, "invalid cipher: %s\n", argv[2]);
return 1;
}
bool has_iv = cipher_name != "des-ede" && cipher_name != "des-ede3";
TestCtx ctx = {cipher, has_iv, test_mode};
FileTestFunc test_fn = test_mode == TestCtx::kKAT ? &TestKAT : &TestMCT;
FileTest::Options opts;
opts.path = argv[3];
opts.callback = test_fn;
opts.arg = &ctx;
opts.silent = true;
opts.comment_callback = EchoComment;
return FileTestMain(opts);
}