| /* ==================================================================== | 
 |  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    licensing@OpenSSL.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== */ | 
 |  | 
 | #include <openssl/cmac.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/aes.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | struct cmac_ctx_st { | 
 |   EVP_CIPHER_CTX cipher_ctx; | 
 |   // k1 and k2 are the CMAC subkeys. See | 
 |   // https://tools.ietf.org/html/rfc4493#section-2.3 | 
 |   uint8_t k1[AES_BLOCK_SIZE]; | 
 |   uint8_t k2[AES_BLOCK_SIZE]; | 
 |   // Last (possibly partial) scratch | 
 |   uint8_t block[AES_BLOCK_SIZE]; | 
 |   // block_used contains the number of valid bytes in |block|. | 
 |   unsigned block_used; | 
 | }; | 
 |  | 
 | static void CMAC_CTX_init(CMAC_CTX *ctx) { | 
 |   EVP_CIPHER_CTX_init(&ctx->cipher_ctx); | 
 | } | 
 |  | 
 | static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { | 
 |   EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); | 
 |   OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); | 
 |   OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); | 
 |   OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); | 
 | } | 
 |  | 
 | int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, | 
 |              const uint8_t *in, size_t in_len) { | 
 |   const EVP_CIPHER *cipher; | 
 |   switch (key_len) { | 
 |     case 16: | 
 |       cipher = EVP_aes_128_cbc(); | 
 |       break; | 
 |     case 32: | 
 |       cipher = EVP_aes_256_cbc(); | 
 |       break; | 
 |     default: | 
 |       return 0; | 
 |   } | 
 |  | 
 |   size_t scratch_out_len; | 
 |   CMAC_CTX ctx; | 
 |   CMAC_CTX_init(&ctx); | 
 |  | 
 |   const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && | 
 |                  CMAC_Update(&ctx, in, in_len) && | 
 |                  CMAC_Final(&ctx, out, &scratch_out_len); | 
 |  | 
 |   CMAC_CTX_cleanup(&ctx); | 
 |   return ok; | 
 | } | 
 |  | 
 | CMAC_CTX *CMAC_CTX_new(void) { | 
 |   CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); | 
 |   if (ctx != NULL) { | 
 |     CMAC_CTX_init(ctx); | 
 |   } | 
 |   return ctx; | 
 | } | 
 |  | 
 | void CMAC_CTX_free(CMAC_CTX *ctx) { | 
 |   if (ctx == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   CMAC_CTX_cleanup(ctx); | 
 |   OPENSSL_free(ctx); | 
 | } | 
 |  | 
 | int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { | 
 |   if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { | 
 |     return 0; | 
 |   } | 
 |   OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); | 
 |   OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); | 
 |   OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); | 
 |   out->block_used = in->block_used; | 
 |   return 1; | 
 | } | 
 |  | 
 | // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) | 
 | // with a hard-coded reduction polynomial and sets |out| as x times the input. | 
 | // | 
 | // See https://tools.ietf.org/html/rfc4493#section-2.3 | 
 | static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { | 
 |   unsigned i; | 
 |  | 
 |   // Shift |in| to left, including carry. | 
 |   for (i = 0; i < 15; i++) { | 
 |     out[i] = (in[i] << 1) | (in[i+1] >> 7); | 
 |   } | 
 |  | 
 |   // If MSB set fixup with R. | 
 |   const uint8_t carry = in[0] >> 7; | 
 |   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); | 
 | } | 
 |  | 
 | // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an | 
 | // element of GF(2⁶⁴). | 
 | // | 
 | // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf | 
 | static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { | 
 |   unsigned i; | 
 |  | 
 |   // Shift |in| to left, including carry. | 
 |   for (i = 0; i < 7; i++) { | 
 |     out[i] = (in[i] << 1) | (in[i+1] >> 7); | 
 |   } | 
 |  | 
 |   // If MSB set fixup with R. | 
 |   const uint8_t carry = in[0] >> 7; | 
 |   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); | 
 | } | 
 |  | 
 | static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; | 
 |  | 
 | int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, | 
 |               const EVP_CIPHER *cipher, ENGINE *engine) { | 
 |   uint8_t scratch[AES_BLOCK_SIZE]; | 
 |  | 
 |   size_t block_size = EVP_CIPHER_block_size(cipher); | 
 |   if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || | 
 |       EVP_CIPHER_key_length(cipher) != key_len || | 
 |       !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || | 
 |       !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || | 
 |       // Reset context again ready for first data. | 
 |       !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (block_size == AES_BLOCK_SIZE) { | 
 |     binary_field_mul_x_128(ctx->k1, scratch); | 
 |     binary_field_mul_x_128(ctx->k2, ctx->k1); | 
 |   } else { | 
 |     binary_field_mul_x_64(ctx->k1, scratch); | 
 |     binary_field_mul_x_64(ctx->k2, ctx->k1); | 
 |   } | 
 |   ctx->block_used = 0; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CMAC_Reset(CMAC_CTX *ctx) { | 
 |   ctx->block_used = 0; | 
 |   return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); | 
 | } | 
 |  | 
 | int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { | 
 |   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); | 
 |   assert(block_size <= AES_BLOCK_SIZE); | 
 |   uint8_t scratch[AES_BLOCK_SIZE]; | 
 |  | 
 |   if (ctx->block_used > 0) { | 
 |     size_t todo = block_size - ctx->block_used; | 
 |     if (in_len < todo) { | 
 |       todo = in_len; | 
 |     } | 
 |  | 
 |     OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); | 
 |     in += todo; | 
 |     in_len -= todo; | 
 |     ctx->block_used += todo; | 
 |  | 
 |     // If |in_len| is zero then either |ctx->block_used| is less than | 
 |     // |block_size|, in which case we can stop here, or |ctx->block_used| is | 
 |     // exactly |block_size| but there's no more data to process. In the latter | 
 |     // case we don't want to process this block now because it might be the last | 
 |     // block and that block is treated specially. | 
 |     if (in_len == 0) { | 
 |       return 1; | 
 |     } | 
 |  | 
 |     assert(ctx->block_used == block_size); | 
 |  | 
 |     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Encrypt all but one of the remaining blocks. | 
 |   while (in_len > block_size) { | 
 |     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { | 
 |       return 0; | 
 |     } | 
 |     in += block_size; | 
 |     in_len -= block_size; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(ctx->block, in, in_len); | 
 |   ctx->block_used = in_len; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { | 
 |   size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); | 
 |   assert(block_size <= AES_BLOCK_SIZE); | 
 |  | 
 |   *out_len = block_size; | 
 |   if (out == NULL) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   const uint8_t *mask = ctx->k1; | 
 |  | 
 |   if (ctx->block_used != block_size) { | 
 |     // If the last block is incomplete, terminate it with a single 'one' bit | 
 |     // followed by zeros. | 
 |     ctx->block[ctx->block_used] = 0x80; | 
 |     OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, | 
 |                    block_size - (ctx->block_used + 1)); | 
 |  | 
 |     mask = ctx->k2; | 
 |   } | 
 |  | 
 |   for (unsigned i = 0; i < block_size; i++) { | 
 |     out[i] = ctx->block[i] ^ mask[i]; | 
 |   } | 
 |  | 
 |   return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); | 
 | } |