| /* Copyright (c) 2014, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | #include <openssl/bytestring.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/buf.h> | 
 | #include <openssl/mem.h> | 
 |  | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | void CBB_zero(CBB *cbb) { | 
 |   OPENSSL_memset(cbb, 0, sizeof(CBB)); | 
 | } | 
 |  | 
 | static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) { | 
 |   // This assumes that |cbb| has already been zeroed. | 
 |   struct cbb_buffer_st *base; | 
 |  | 
 |   base = OPENSSL_malloc(sizeof(struct cbb_buffer_st)); | 
 |   if (base == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   base->buf = buf; | 
 |   base->len = 0; | 
 |   base->cap = cap; | 
 |   base->can_resize = 1; | 
 |   base->error = 0; | 
 |  | 
 |   cbb->base = base; | 
 |   cbb->is_top_level = 1; | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_init(CBB *cbb, size_t initial_capacity) { | 
 |   CBB_zero(cbb); | 
 |  | 
 |   uint8_t *buf = OPENSSL_malloc(initial_capacity); | 
 |   if (initial_capacity > 0 && buf == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!cbb_init(cbb, buf, initial_capacity)) { | 
 |     OPENSSL_free(buf); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { | 
 |   CBB_zero(cbb); | 
 |  | 
 |   if (!cbb_init(cbb, buf, len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   cbb->base->can_resize = 0; | 
 |   return 1; | 
 | } | 
 |  | 
 | void CBB_cleanup(CBB *cbb) { | 
 |   if (cbb->base) { | 
 |     // Only top-level |CBB|s are cleaned up. Child |CBB|s are non-owning. They | 
 |     // are implicitly discarded when the parent is flushed or cleaned up. | 
 |     assert(cbb->is_top_level); | 
 |  | 
 |     if (cbb->base->can_resize) { | 
 |       OPENSSL_free(cbb->base->buf); | 
 |     } | 
 |     OPENSSL_free(cbb->base); | 
 |   } | 
 |   cbb->base = NULL; | 
 | } | 
 |  | 
 | static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out, | 
 |                               size_t len) { | 
 |   size_t newlen; | 
 |  | 
 |   if (base == NULL) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   newlen = base->len + len; | 
 |   if (newlen < base->len) { | 
 |     // Overflow | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (newlen > base->cap) { | 
 |     size_t newcap = base->cap * 2; | 
 |     uint8_t *newbuf; | 
 |  | 
 |     if (!base->can_resize) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (newcap < base->cap || newcap < newlen) { | 
 |       newcap = newlen; | 
 |     } | 
 |     newbuf = OPENSSL_realloc(base->buf, newcap); | 
 |     if (newbuf == NULL) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     base->buf = newbuf; | 
 |     base->cap = newcap; | 
 |   } | 
 |  | 
 |   if (out) { | 
 |     *out = base->buf + base->len; | 
 |   } | 
 |  | 
 |   return 1; | 
 |  | 
 | err: | 
 |   base->error = 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, | 
 |                           size_t len) { | 
 |   if (!cbb_buffer_reserve(base, out, len)) { | 
 |     return 0; | 
 |   } | 
 |   // This will not overflow or |cbb_buffer_reserve| would have failed. | 
 |   base->len += len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint32_t v, | 
 |                             size_t len_len) { | 
 |   if (len_len == 0) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   uint8_t *buf; | 
 |   if (!cbb_buffer_add(base, &buf, len_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (size_t i = len_len - 1; i < len_len; i--) { | 
 |     buf[i] = v; | 
 |     v >>= 8; | 
 |   } | 
 |  | 
 |   if (v != 0) { | 
 |     base->error = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { | 
 |   if (!cbb->is_top_level) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) { | 
 |     // |out_data| and |out_len| can only be NULL if the CBB is fixed. | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (out_data != NULL) { | 
 |     *out_data = cbb->base->buf; | 
 |   } | 
 |   if (out_len != NULL) { | 
 |     *out_len = cbb->base->len; | 
 |   } | 
 |   cbb->base->buf = NULL; | 
 |   CBB_cleanup(cbb); | 
 |   return 1; | 
 | } | 
 |  | 
 | // CBB_flush recurses and then writes out any pending length prefix. The | 
 | // current length of the underlying base is taken to be the length of the | 
 | // length-prefixed data. | 
 | int CBB_flush(CBB *cbb) { | 
 |   size_t child_start, i, len; | 
 |  | 
 |   // If |cbb->base| has hit an error, the buffer is in an undefined state, so | 
 |   // fail all following calls. In particular, |cbb->child| may point to invalid | 
 |   // memory. | 
 |   if (cbb->base == NULL || cbb->base->error) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (cbb->child == NULL || cbb->child->pending_len_len == 0) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   child_start = cbb->child->offset + cbb->child->pending_len_len; | 
 |  | 
 |   if (!CBB_flush(cbb->child) || | 
 |       child_start < cbb->child->offset || | 
 |       cbb->base->len < child_start) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   len = cbb->base->len - child_start; | 
 |  | 
 |   if (cbb->child->pending_is_asn1) { | 
 |     // For ASN.1 we assume that we'll only need a single byte for the length. | 
 |     // If that turned out to be incorrect, we have to move the contents along | 
 |     // in order to make space. | 
 |     uint8_t len_len; | 
 |     uint8_t initial_length_byte; | 
 |  | 
 |     assert (cbb->child->pending_len_len == 1); | 
 |  | 
 |     if (len > 0xfffffffe) { | 
 |       // Too large. | 
 |       goto err; | 
 |     } else if (len > 0xffffff) { | 
 |       len_len = 5; | 
 |       initial_length_byte = 0x80 | 4; | 
 |     } else if (len > 0xffff) { | 
 |       len_len = 4; | 
 |       initial_length_byte = 0x80 | 3; | 
 |     } else if (len > 0xff) { | 
 |       len_len = 3; | 
 |       initial_length_byte = 0x80 | 2; | 
 |     } else if (len > 0x7f) { | 
 |       len_len = 2; | 
 |       initial_length_byte = 0x80 | 1; | 
 |     } else { | 
 |       len_len = 1; | 
 |       initial_length_byte = (uint8_t)len; | 
 |       len = 0; | 
 |     } | 
 |  | 
 |     if (len_len != 1) { | 
 |       // We need to move the contents along in order to make space. | 
 |       size_t extra_bytes = len_len - 1; | 
 |       if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) { | 
 |         goto err; | 
 |       } | 
 |       OPENSSL_memmove(cbb->base->buf + child_start + extra_bytes, | 
 |                       cbb->base->buf + child_start, len); | 
 |     } | 
 |     cbb->base->buf[cbb->child->offset++] = initial_length_byte; | 
 |     cbb->child->pending_len_len = len_len - 1; | 
 |   } | 
 |  | 
 |   for (i = cbb->child->pending_len_len - 1; i < cbb->child->pending_len_len; | 
 |        i--) { | 
 |     cbb->base->buf[cbb->child->offset + i] = (uint8_t)len; | 
 |     len >>= 8; | 
 |   } | 
 |   if (len != 0) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   cbb->child->base = NULL; | 
 |   cbb->child = NULL; | 
 |  | 
 |   return 1; | 
 |  | 
 | err: | 
 |   cbb->base->error = 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | const uint8_t *CBB_data(const CBB *cbb) { | 
 |   assert(cbb->child == NULL); | 
 |   return cbb->base->buf + cbb->offset + cbb->pending_len_len; | 
 | } | 
 |  | 
 | size_t CBB_len(const CBB *cbb) { | 
 |   assert(cbb->child == NULL); | 
 |   assert(cbb->offset + cbb->pending_len_len <= cbb->base->len); | 
 |  | 
 |   return cbb->base->len - cbb->offset - cbb->pending_len_len; | 
 | } | 
 |  | 
 | static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, | 
 |                                    uint8_t len_len) { | 
 |   uint8_t *prefix_bytes; | 
 |  | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t offset = cbb->base->len; | 
 |   if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memset(prefix_bytes, 0, len_len); | 
 |   OPENSSL_memset(out_contents, 0, sizeof(CBB)); | 
 |   out_contents->base = cbb->base; | 
 |   cbb->child = out_contents; | 
 |   cbb->child->offset = offset; | 
 |   cbb->child->pending_len_len = len_len; | 
 |   cbb->child->pending_is_asn1 = 0; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { | 
 |   return cbb_add_length_prefixed(cbb, out_contents, 1); | 
 | } | 
 |  | 
 | int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { | 
 |   return cbb_add_length_prefixed(cbb, out_contents, 2); | 
 | } | 
 |  | 
 | int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { | 
 |   return cbb_add_length_prefixed(cbb, out_contents, 3); | 
 | } | 
 |  | 
 | // add_base128_integer encodes |v| as a big-endian base-128 integer where the | 
 | // high bit of each byte indicates where there is more data. This is the | 
 | // encoding used in DER for both high tag number form and OID components. | 
 | static int add_base128_integer(CBB *cbb, uint64_t v) { | 
 |   unsigned len_len = 0; | 
 |   uint64_t copy = v; | 
 |   while (copy > 0) { | 
 |     len_len++; | 
 |     copy >>= 7; | 
 |   } | 
 |   if (len_len == 0) { | 
 |     len_len = 1;  // Zero is encoded with one byte. | 
 |   } | 
 |   for (unsigned i = len_len - 1; i < len_len; i--) { | 
 |     uint8_t byte = (v >> (7 * i)) & 0x7f; | 
 |     if (i != 0) { | 
 |       // The high bit denotes whether there is more data. | 
 |       byte |= 0x80; | 
 |     } | 
 |     if (!CBB_add_u8(cbb, byte)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Split the tag into leading bits and tag number. | 
 |   uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0; | 
 |   unsigned tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK; | 
 |   if (tag_number >= 0x1f) { | 
 |     // Set all the bits in the tag number to signal high tag number form. | 
 |     if (!CBB_add_u8(cbb, tag_bits | 0x1f) || | 
 |         !add_base128_integer(cbb, tag_number)) { | 
 |       return 0; | 
 |     } | 
 |   } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t offset = cbb->base->len; | 
 |   if (!CBB_add_u8(cbb, 0)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memset(out_contents, 0, sizeof(CBB)); | 
 |   out_contents->base = cbb->base; | 
 |   cbb->child = out_contents; | 
 |   cbb->child->offset = offset; | 
 |   cbb->child->pending_len_len = 1; | 
 |   cbb->child->pending_is_asn1 = 1; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { | 
 |   uint8_t *dest; | 
 |  | 
 |   if (!CBB_flush(cbb) || | 
 |       !cbb_buffer_add(cbb->base, &dest, len)) { | 
 |     return 0; | 
 |   } | 
 |   OPENSSL_memcpy(dest, data, len); | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { | 
 |   if (!CBB_flush(cbb) || | 
 |       !cbb_buffer_add(cbb->base, out_data, len)) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) { | 
 |   if (!CBB_flush(cbb) || | 
 |       !cbb_buffer_reserve(cbb->base, out_data, len)) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_did_write(CBB *cbb, size_t len) { | 
 |   size_t newlen = cbb->base->len + len; | 
 |   if (cbb->child != NULL || | 
 |       newlen < cbb->base->len || | 
 |       newlen > cbb->base->cap) { | 
 |     return 0; | 
 |   } | 
 |   cbb->base->len = newlen; | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_u8(CBB *cbb, uint8_t value) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return cbb_buffer_add_u(cbb->base, value, 1); | 
 | } | 
 |  | 
 | int CBB_add_u16(CBB *cbb, uint16_t value) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return cbb_buffer_add_u(cbb->base, value, 2); | 
 | } | 
 |  | 
 | int CBB_add_u24(CBB *cbb, uint32_t value) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return cbb_buffer_add_u(cbb->base, value, 3); | 
 | } | 
 |  | 
 | int CBB_add_u32(CBB *cbb, uint32_t value) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return cbb_buffer_add_u(cbb->base, value, 4); | 
 | } | 
 |  | 
 | void CBB_discard_child(CBB *cbb) { | 
 |   if (cbb->child == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   cbb->base->len = cbb->child->offset; | 
 |  | 
 |   cbb->child->base = NULL; | 
 |   cbb->child = NULL; | 
 | } | 
 |  | 
 | int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { | 
 |   CBB child; | 
 |   int started = 0; | 
 |  | 
 |   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_INTEGER)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < 8; i++) { | 
 |     uint8_t byte = (value >> 8*(7-i)) & 0xff; | 
 |     if (!started) { | 
 |       if (byte == 0) { | 
 |         // Don't encode leading zeros. | 
 |         continue; | 
 |       } | 
 |       // If the high bit is set, add a padding byte to make it | 
 |       // unsigned. | 
 |       if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { | 
 |         return 0; | 
 |       } | 
 |       started = 1; | 
 |     } | 
 |     if (!CBB_add_u8(&child, byte)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // 0 is encoded as a single 0, not the empty string. | 
 |   if (!started && !CBB_add_u8(&child, 0)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return CBB_flush(cbb); | 
 | } | 
 |  | 
 | int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) { | 
 |   CBB child; | 
 |   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) || | 
 |       !CBB_add_bytes(&child, data, data_len) || | 
 |       !CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int CBB_add_asn1_bool(CBB *cbb, int value) { | 
 |   CBB child; | 
 |   if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) || | 
 |       !CBB_add_u8(&child, value != 0 ? 0xff : 0) || | 
 |       !CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is | 
 | // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the | 
 | // component and the dot, so |cbs| may be passed into the function again for the | 
 | // next value. | 
 | static int parse_dotted_decimal(CBS *cbs, uint64_t *out) { | 
 |   *out = 0; | 
 |   int seen_digit = 0; | 
 |   for (;;) { | 
 |     // Valid terminators for a component are the end of the string or a | 
 |     // non-terminal dot. If the string ends with a dot, this is not a valid OID | 
 |     // string. | 
 |     uint8_t u; | 
 |     if (!CBS_get_u8(cbs, &u) || | 
 |         (u == '.' && CBS_len(cbs) > 0)) { | 
 |       break; | 
 |     } | 
 |     if (u < '0' || u > '9' || | 
 |         // Forbid stray leading zeros. | 
 |         (seen_digit && *out == 0) || | 
 |         // Check for overflow. | 
 |         *out > UINT64_MAX / 10 || | 
 |         *out * 10 > UINT64_MAX - (u - '0')) { | 
 |       return 0; | 
 |     } | 
 |     *out = *out * 10 + (u - '0'); | 
 |     seen_digit = 1; | 
 |   } | 
 |   // The empty string is not a legal OID component. | 
 |   return seen_digit; | 
 | } | 
 |  | 
 | int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, (const uint8_t *)text, len); | 
 |  | 
 |   // OIDs must have at least two components. | 
 |   uint64_t a, b; | 
 |   if (!parse_dotted_decimal(&cbs, &a) || | 
 |       !parse_dotted_decimal(&cbs, &b)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is | 
 |   // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39. | 
 |   if (a > 2 || | 
 |       (a < 2 && b > 39) || | 
 |       b > UINT64_MAX - 80 || | 
 |       !add_base128_integer(cbb, 40u * a + b)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The remaining components are encoded unmodified. | 
 |   while (CBS_len(&cbs) > 0) { | 
 |     if (!parse_dotted_decimal(&cbs, &a) || | 
 |         !add_base128_integer(cbb, a)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int compare_set_of_element(const void *a_ptr, const void *b_ptr) { | 
 |   // See X.690, section 11.6 for the ordering. They are sorted in ascending | 
 |   // order by their DER encoding. | 
 |   const CBS *a = a_ptr, *b = b_ptr; | 
 |   size_t a_len = CBS_len(a), b_len = CBS_len(b); | 
 |   size_t min_len = a_len < b_len ? a_len : b_len; | 
 |   int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len); | 
 |   if (ret != 0) { | 
 |     return ret; | 
 |   } | 
 |   if (a_len == b_len) { | 
 |     return 0; | 
 |   } | 
 |   // If one is a prefix of the other, the shorter one sorts first. (This is not | 
 |   // actually reachable. No DER encoding is a prefix of another DER encoding.) | 
 |   return a_len < b_len ? -1 : 1; | 
 | } | 
 |  | 
 | int CBB_flush_asn1_set_of(CBB *cbb) { | 
 |   if (!CBB_flush(cbb)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CBS cbs; | 
 |   size_t num_children = 0; | 
 |   CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb)); | 
 |   while (CBS_len(&cbs) != 0) { | 
 |     if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) { | 
 |       return 0; | 
 |     } | 
 |     num_children++; | 
 |   } | 
 |  | 
 |   if (num_children < 2) { | 
 |     return 1;  // Nothing to do. This is the common case for X.509. | 
 |   } | 
 |   if (num_children > ((size_t)-1) / sizeof(CBS)) { | 
 |     return 0;  // Overflow. | 
 |   } | 
 |  | 
 |   // Parse out the children and sort. We alias them into a copy of so they | 
 |   // remain valid as we rewrite |cbb|. | 
 |   int ret = 0; | 
 |   size_t buf_len = CBB_len(cbb); | 
 |   uint8_t *buf = BUF_memdup(CBB_data(cbb), buf_len); | 
 |   CBS *children = OPENSSL_malloc(num_children * sizeof(CBS)); | 
 |   if (buf == NULL || children == NULL) { | 
 |     goto err; | 
 |   } | 
 |   CBS_init(&cbs, buf, buf_len); | 
 |   for (size_t i = 0; i < num_children; i++) { | 
 |     if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   qsort(children, num_children, sizeof(CBS), compare_set_of_element); | 
 |  | 
 |   // Rewind |cbb| and write the contents back in the new order. | 
 |   cbb->base->len = cbb->offset + cbb->pending_len_len; | 
 |   for (size_t i = 0; i < num_children; i++) { | 
 |     if (!CBB_add_bytes(cbb, CBS_data(&children[i]), CBS_len(&children[i]))) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   assert(CBB_len(cbb) == buf_len); | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(buf); | 
 |   OPENSSL_free(children); | 
 |   return ret; | 
 | } |