| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/base64.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/type_check.h> | 
 |  | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | // constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t| | 
 | // arguments for a slightly simpler implementation. | 
 | static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) { | 
 |   crypto_word_t aw = a; | 
 |   crypto_word_t bw = b; | 
 |   // |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same | 
 |   // MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1. | 
 |   return constant_time_msb_w(aw - bw); | 
 | } | 
 |  | 
 | // constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max| | 
 | // and |CONSTTIME_FALSE_8| otherwise. | 
 | static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min, | 
 |                                                uint8_t max) { | 
 |   a -= min; | 
 |   return constant_time_lt_args_8(a, max - min + 1); | 
 | } | 
 |  | 
 | // Encoding. | 
 |  | 
 | static uint8_t conv_bin2ascii(uint8_t a) { | 
 |   // Since PEM is sometimes used to carry private keys, we encode base64 data | 
 |   // itself in constant-time. | 
 |   a &= 0x3f; | 
 |   uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/'); | 
 |   ret = | 
 |       constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret); | 
 |   ret = | 
 |       constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret); | 
 |   ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret); | 
 |   return ret; | 
 | } | 
 |  | 
 | OPENSSL_COMPILE_ASSERT(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0, | 
 |                        data_length_must_be_multiple_of_base64_chunk_size); | 
 |  | 
 | int EVP_EncodedLength(size_t *out_len, size_t len) { | 
 |   if (len + 2 < len) { | 
 |     return 0; | 
 |   } | 
 |   len += 2; | 
 |   len /= 3; | 
 |  | 
 |   if (((len << 2) >> 2) != len) { | 
 |     return 0; | 
 |   } | 
 |   len <<= 2; | 
 |  | 
 |   if (len + 1 < len) { | 
 |     return 0; | 
 |   } | 
 |   len++; | 
 |  | 
 |   *out_len = len; | 
 |   return 1; | 
 | } | 
 |  | 
 | void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) { | 
 |   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); | 
 | } | 
 |  | 
 | void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, | 
 |                       const uint8_t *in, size_t in_len) { | 
 |   size_t total = 0; | 
 |  | 
 |   *out_len = 0; | 
 |   if (in_len == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(ctx->data_used < sizeof(ctx->data)); | 
 |  | 
 |   if (sizeof(ctx->data) - ctx->data_used > in_len) { | 
 |     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len); | 
 |     ctx->data_used += (unsigned)in_len; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ctx->data_used != 0) { | 
 |     const size_t todo = sizeof(ctx->data) - ctx->data_used; | 
 |     OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo); | 
 |     in += todo; | 
 |     in_len -= todo; | 
 |  | 
 |     size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data)); | 
 |     ctx->data_used = 0; | 
 |  | 
 |     out += encoded; | 
 |     *(out++) = '\n'; | 
 |     *out = '\0'; | 
 |  | 
 |     total = encoded + 1; | 
 |   } | 
 |  | 
 |   while (in_len >= sizeof(ctx->data)) { | 
 |     size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data)); | 
 |     in += sizeof(ctx->data); | 
 |     in_len -= sizeof(ctx->data); | 
 |  | 
 |     out += encoded; | 
 |     *(out++) = '\n'; | 
 |     *out = '\0'; | 
 |  | 
 |     if (total + encoded + 1 < total) { | 
 |       *out_len = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |     total += encoded + 1; | 
 |   } | 
 |  | 
 |   if (in_len != 0) { | 
 |     OPENSSL_memcpy(ctx->data, in, in_len); | 
 |   } | 
 |  | 
 |   ctx->data_used = (unsigned)in_len; | 
 |  | 
 |   if (total > INT_MAX) { | 
 |     // We cannot signal an error, but we can at least avoid making *out_len | 
 |     // negative. | 
 |     total = 0; | 
 |   } | 
 |   *out_len = (int)total; | 
 | } | 
 |  | 
 | void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { | 
 |   if (ctx->data_used == 0) { | 
 |     *out_len = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used); | 
 |   out[encoded++] = '\n'; | 
 |   out[encoded] = '\0'; | 
 |   ctx->data_used = 0; | 
 |  | 
 |   // ctx->data_used is bounded by sizeof(ctx->data), so this does not | 
 |   // overflow. | 
 |   assert(encoded <= INT_MAX); | 
 |   *out_len = (int)encoded; | 
 | } | 
 |  | 
 | size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { | 
 |   uint32_t l; | 
 |   size_t remaining = src_len, ret = 0; | 
 |  | 
 |   while (remaining) { | 
 |     if (remaining >= 3) { | 
 |       l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2]; | 
 |       *(dst++) = conv_bin2ascii(l >> 18L); | 
 |       *(dst++) = conv_bin2ascii(l >> 12L); | 
 |       *(dst++) = conv_bin2ascii(l >> 6L); | 
 |       *(dst++) = conv_bin2ascii(l); | 
 |       remaining -= 3; | 
 |     } else { | 
 |       l = ((uint32_t)src[0]) << 16L; | 
 |       if (remaining == 2) { | 
 |         l |= ((uint32_t)src[1] << 8L); | 
 |       } | 
 |  | 
 |       *(dst++) = conv_bin2ascii(l >> 18L); | 
 |       *(dst++) = conv_bin2ascii(l >> 12L); | 
 |       *(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L); | 
 |       *(dst++) = '='; | 
 |       remaining = 0; | 
 |     } | 
 |     ret += 4; | 
 |     src += 3; | 
 |   } | 
 |  | 
 |   *dst = '\0'; | 
 |   return ret; | 
 | } | 
 |  | 
 |  | 
 | // Decoding. | 
 |  | 
 | int EVP_DecodedLength(size_t *out_len, size_t len) { | 
 |   if (len % 4 != 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   *out_len = (len / 4) * 3; | 
 |   return 1; | 
 | } | 
 |  | 
 | void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) { | 
 |   OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX)); | 
 | } | 
 |  | 
 | static uint8_t base64_ascii_to_bin(uint8_t a) { | 
 |   // Since PEM is sometimes used to carry private keys, we decode base64 data | 
 |   // itself in constant-time. | 
 |   const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z'); | 
 |   const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z'); | 
 |   const uint8_t is_digit = constant_time_in_range_8(a, '0', '9'); | 
 |   const uint8_t is_plus = constant_time_eq_8(a, '+'); | 
 |   const uint8_t is_slash = constant_time_eq_8(a, '/'); | 
 |   const uint8_t is_equals = constant_time_eq_8(a, '='); | 
 |  | 
 |   uint8_t ret = 0xff;  // 0xff signals invalid. | 
 |   ret = constant_time_select_8(is_upper, a - 'A', ret);       // [0,26) | 
 |   ret = constant_time_select_8(is_lower, a - 'a' + 26, ret);  // [26,52) | 
 |   ret = constant_time_select_8(is_digit, a - '0' + 52, ret);  // [52,62) | 
 |   ret = constant_time_select_8(is_plus, 62, ret); | 
 |   ret = constant_time_select_8(is_slash, 63, ret); | 
 |   // Padding maps to zero, to be further handled by the caller. | 
 |   ret = constant_time_select_8(is_equals, 0, ret); | 
 |   return ret; | 
 | } | 
 |  | 
 | // base64_decode_quad decodes a single “quad” (i.e. four characters) of base64 | 
 | // data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the | 
 | // number of bytes written, which will be less than three if the quad ended | 
 | // with padding.  It returns one on success or zero on error. | 
 | static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes, | 
 |                               const uint8_t *in) { | 
 |   const uint8_t a = base64_ascii_to_bin(in[0]); | 
 |   const uint8_t b = base64_ascii_to_bin(in[1]); | 
 |   const uint8_t c = base64_ascii_to_bin(in[2]); | 
 |   const uint8_t d = base64_ascii_to_bin(in[3]); | 
 |   if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 | | 
 |                      ((uint32_t)c) << 6 | (uint32_t)d; | 
 |  | 
 |   const unsigned padding_pattern = (in[0] == '=') << 3 | | 
 |                                    (in[1] == '=') << 2 | | 
 |                                    (in[2] == '=') << 1 | | 
 |                                    (in[3] == '='); | 
 |  | 
 |   switch (padding_pattern) { | 
 |     case 0: | 
 |       // The common case of no padding. | 
 |       *out_num_bytes = 3; | 
 |       out[0] = v >> 16; | 
 |       out[1] = v >> 8; | 
 |       out[2] = v; | 
 |       break; | 
 |  | 
 |     case 1:  // xxx= | 
 |       *out_num_bytes = 2; | 
 |       out[0] = v >> 16; | 
 |       out[1] = v >> 8; | 
 |       break; | 
 |  | 
 |     case 3:  // xx== | 
 |       *out_num_bytes = 1; | 
 |       out[0] = v >> 16; | 
 |       break; | 
 |  | 
 |     default: | 
 |       return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len, | 
 |                      const uint8_t *in, size_t in_len) { | 
 |   *out_len = 0; | 
 |  | 
 |   if (ctx->error_encountered) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   size_t bytes_out = 0, i; | 
 |   for (i = 0; i < in_len; i++) { | 
 |     const char c = in[i]; | 
 |     switch (c) { | 
 |       case ' ': | 
 |       case '\t': | 
 |       case '\r': | 
 |       case '\n': | 
 |         continue; | 
 |     } | 
 |  | 
 |     if (ctx->eof_seen) { | 
 |       ctx->error_encountered = 1; | 
 |       return -1; | 
 |     } | 
 |  | 
 |     ctx->data[ctx->data_used++] = c; | 
 |     if (ctx->data_used == 4) { | 
 |       size_t num_bytes_resulting; | 
 |       if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) { | 
 |         ctx->error_encountered = 1; | 
 |         return -1; | 
 |       } | 
 |  | 
 |       ctx->data_used = 0; | 
 |       bytes_out += num_bytes_resulting; | 
 |       out += num_bytes_resulting; | 
 |  | 
 |       if (num_bytes_resulting < 3) { | 
 |         ctx->eof_seen = 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (bytes_out > INT_MAX) { | 
 |     ctx->error_encountered = 1; | 
 |     *out_len = 0; | 
 |     return -1; | 
 |   } | 
 |   *out_len = (int)bytes_out; | 
 |  | 
 |   if (ctx->eof_seen) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) { | 
 |   *out_len = 0; | 
 |   if (ctx->error_encountered || ctx->data_used != 0) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out, | 
 |                      const uint8_t *in, size_t in_len) { | 
 |   *out_len = 0; | 
 |  | 
 |   if (in_len % 4 != 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t max_len; | 
 |   if (!EVP_DecodedLength(&max_len, in_len) || | 
 |       max_out < max_len) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t i, bytes_out = 0; | 
 |   for (i = 0; i < in_len; i += 4) { | 
 |     size_t num_bytes_resulting; | 
 |  | 
 |     if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) { | 
 |       return 0; | 
 |     } | 
 |  | 
 |     bytes_out += num_bytes_resulting; | 
 |     out += num_bytes_resulting; | 
 |     if (num_bytes_resulting != 3 && i != in_len - 4) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   *out_len = bytes_out; | 
 |   return 1; | 
 | } | 
 |  | 
 | int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) { | 
 |   // Trim spaces and tabs from the beginning of the input. | 
 |   while (src_len > 0) { | 
 |     if (src[0] != ' ' && src[0] != '\t') { | 
 |       break; | 
 |     } | 
 |  | 
 |     src++; | 
 |     src_len--; | 
 |   } | 
 |  | 
 |   // Trim newlines, spaces and tabs from the end of the line. | 
 |   while (src_len > 0) { | 
 |     switch (src[src_len-1]) { | 
 |       case ' ': | 
 |       case '\t': | 
 |       case '\r': | 
 |       case '\n': | 
 |         src_len--; | 
 |         continue; | 
 |     } | 
 |  | 
 |     break; | 
 |   } | 
 |  | 
 |   size_t dst_len; | 
 |   if (!EVP_DecodedLength(&dst_len, src_len) || | 
 |       dst_len > INT_MAX || | 
 |       !EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   // EVP_DecodeBlock does not take padding into account, so put the | 
 |   // NULs back in... so the caller can strip them back out. | 
 |   while (dst_len % 3 != 0) { | 
 |     dst[dst_len++] = '\0'; | 
 |   } | 
 |   assert(dst_len <= INT_MAX); | 
 |  | 
 |   return (int)dst_len; | 
 | } |