| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | 
 |  * project 2005. | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 2005 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    licensing@OpenSSL.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/rsa.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/digest.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/rand.h> | 
 | #include <openssl/sha.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../../internal.h" | 
 |  | 
 |  | 
 | #define RSA_PKCS1_PADDING_SIZE 11 | 
 |  | 
 | int RSA_padding_add_PKCS1_type_1(uint8_t *to, size_t to_len, | 
 |                                  const uint8_t *from, size_t from_len) { | 
 |   // See RFC 8017, section 9.2. | 
 |   if (to_len < RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[0] = 0; | 
 |   to[1] = 1; | 
 |   OPENSSL_memset(to + 2, 0xff, to_len - 3 - from_len); | 
 |   to[to_len - from_len - 1] = 0; | 
 |   OPENSSL_memcpy(to + to_len - from_len, from, from_len); | 
 |   return 1; | 
 | } | 
 |  | 
 | int RSA_padding_check_PKCS1_type_1(uint8_t *out, size_t *out_len, | 
 |                                    size_t max_out, const uint8_t *from, | 
 |                                    size_t from_len) { | 
 |   // See RFC 8017, section 9.2. This is part of signature verification and thus | 
 |   // does not need to run in constant-time. | 
 |   if (from_len < 2) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Check the header. | 
 |   if (from[0] != 0 || from[1] != 1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Scan over padded data, looking for the 00. | 
 |   size_t pad; | 
 |   for (pad = 2 /* header */; pad < from_len; pad++) { | 
 |     if (from[pad] == 0x00) { | 
 |       break; | 
 |     } | 
 |  | 
 |     if (from[pad] != 0xff) { | 
 |       OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (pad == from_len) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (pad < 2 /* header */ + 8) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Skip over the 00. | 
 |   pad++; | 
 |  | 
 |   if (from_len - pad > max_out) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out, from + pad, from_len - pad); | 
 |   *out_len = from_len - pad; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int rand_nonzero(uint8_t *out, size_t len) { | 
 |   if (!RAND_bytes(out, len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < len; i++) { | 
 |     while (out[i] == 0) { | 
 |       if (!RAND_bytes(out + i, 1)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int RSA_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, | 
 |                                  const uint8_t *from, size_t from_len) { | 
 |   // See RFC 8017, section 7.2.1. | 
 |   if (to_len < RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[0] = 0; | 
 |   to[1] = 2; | 
 |  | 
 |   size_t padding_len = to_len - 3 - from_len; | 
 |   if (!rand_nonzero(to + 2, padding_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[2 + padding_len] = 0; | 
 |   OPENSSL_memcpy(to + to_len - from_len, from, from_len); | 
 |   return 1; | 
 | } | 
 |  | 
 | int RSA_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, | 
 |                                    size_t max_out, const uint8_t *from, | 
 |                                    size_t from_len) { | 
 |   if (from_len == 0) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography | 
 |   // Standard", section 7.2.2. | 
 |   if (from_len < RSA_PKCS1_PADDING_SIZE) { | 
 |     // |from| is zero-padded to the size of the RSA modulus, a public value, so | 
 |     // this can be rejected in non-constant time. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); | 
 |   crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); | 
 |  | 
 |   crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; | 
 |   for (size_t i = 2; i < from_len; i++) { | 
 |     crypto_word_t equals0 = constant_time_is_zero_w(from[i]); | 
 |     zero_index = | 
 |         constant_time_select_w(looking_for_index & equals0, i, zero_index); | 
 |     looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); | 
 |   } | 
 |  | 
 |   // The input must begin with 00 02. | 
 |   crypto_word_t valid_index = first_byte_is_zero; | 
 |   valid_index &= second_byte_is_two; | 
 |  | 
 |   // We must have found the end of PS. | 
 |   valid_index &= ~looking_for_index; | 
 |  | 
 |   // PS must be at least 8 bytes long, and it starts two bytes into |from|. | 
 |   valid_index &= constant_time_ge_w(zero_index, 2 + 8); | 
 |  | 
 |   // Skip the zero byte. | 
 |   zero_index++; | 
 |  | 
 |   // NOTE: Although this logic attempts to be constant time, the API contracts | 
 |   // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it | 
 |   // impossible to completely avoid Bleichenbacher's attack. Consumers should | 
 |   // use |RSA_PADDING_NONE| and perform the padding check in constant-time | 
 |   // combined with a swap to a random session key or other mitigation. | 
 |   if (!valid_index) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const size_t msg_len = from_len - zero_index; | 
 |   if (msg_len > max_out) { | 
 |     // This shouldn't happen because this function is always called with | 
 |     // |max_out| as the key size and |from_len| is bounded by the key size. | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out, &from[zero_index], msg_len); | 
 |   *out_len = msg_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | int RSA_padding_add_none(uint8_t *to, size_t to_len, const uint8_t *from, | 
 |                          size_t from_len) { | 
 |   if (from_len > to_len) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (from_len < to_len) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(to, from, from_len); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int PKCS1_MGF1(uint8_t *out, size_t len, const uint8_t *seed, | 
 |                       size_t seed_len, const EVP_MD *md) { | 
 |   int ret = 0; | 
 |   EVP_MD_CTX ctx; | 
 |   EVP_MD_CTX_init(&ctx); | 
 |  | 
 |   size_t md_len = EVP_MD_size(md); | 
 |  | 
 |   for (uint32_t i = 0; len > 0; i++) { | 
 |     uint8_t counter[4]; | 
 |     counter[0] = (uint8_t)(i >> 24); | 
 |     counter[1] = (uint8_t)(i >> 16); | 
 |     counter[2] = (uint8_t)(i >> 8); | 
 |     counter[3] = (uint8_t)i; | 
 |     if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
 |         !EVP_DigestUpdate(&ctx, seed, seed_len) || | 
 |         !EVP_DigestUpdate(&ctx, counter, sizeof(counter))) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     if (md_len <= len) { | 
 |       if (!EVP_DigestFinal_ex(&ctx, out, NULL)) { | 
 |         goto err; | 
 |       } | 
 |       out += md_len; | 
 |       len -= md_len; | 
 |     } else { | 
 |       uint8_t digest[EVP_MAX_MD_SIZE]; | 
 |       if (!EVP_DigestFinal_ex(&ctx, digest, NULL)) { | 
 |         goto err; | 
 |       } | 
 |       OPENSSL_memcpy(out, digest, len); | 
 |       len = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   EVP_MD_CTX_cleanup(&ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, | 
 |                                     const uint8_t *from, size_t from_len, | 
 |                                     const uint8_t *param, size_t param_len, | 
 |                                     const EVP_MD *md, const EVP_MD *mgf1md) { | 
 |   if (md == NULL) { | 
 |     md = EVP_sha1(); | 
 |   } | 
 |   if (mgf1md == NULL) { | 
 |     mgf1md = md; | 
 |   } | 
 |  | 
 |   size_t mdlen = EVP_MD_size(md); | 
 |  | 
 |   if (to_len < 2 * mdlen + 2) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t emlen = to_len - 1; | 
 |   if (from_len > emlen - 2 * mdlen - 1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (emlen < 2 * mdlen + 1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   to[0] = 0; | 
 |   uint8_t *seed = to + 1; | 
 |   uint8_t *db = to + mdlen + 1; | 
 |  | 
 |   if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { | 
 |     return 0; | 
 |   } | 
 |   OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); | 
 |   db[emlen - from_len - mdlen - 1] = 0x01; | 
 |   OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); | 
 |   if (!RAND_bytes(seed, mdlen)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t *dbmask = OPENSSL_malloc(emlen - mdlen); | 
 |   if (dbmask == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { | 
 |     goto out; | 
 |   } | 
 |   for (size_t i = 0; i < emlen - mdlen; i++) { | 
 |     db[i] ^= dbmask[i]; | 
 |   } | 
 |  | 
 |   uint8_t seedmask[EVP_MAX_MD_SIZE]; | 
 |   if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { | 
 |     goto out; | 
 |   } | 
 |   for (size_t i = 0; i < mdlen; i++) { | 
 |     seed[i] ^= seedmask[i]; | 
 |   } | 
 |   ret = 1; | 
 |  | 
 | out: | 
 |   OPENSSL_free(dbmask); | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, | 
 |                                       size_t max_out, const uint8_t *from, | 
 |                                       size_t from_len, const uint8_t *param, | 
 |                                       size_t param_len, const EVP_MD *md, | 
 |                                       const EVP_MD *mgf1md) { | 
 |   uint8_t *db = NULL; | 
 |  | 
 |   if (md == NULL) { | 
 |     md = EVP_sha1(); | 
 |   } | 
 |   if (mgf1md == NULL) { | 
 |     mgf1md = md; | 
 |   } | 
 |  | 
 |   size_t mdlen = EVP_MD_size(md); | 
 |  | 
 |   // The encoded message is one byte smaller than the modulus to ensure that it | 
 |   // doesn't end up greater than the modulus. Thus there's an extra "+1" here | 
 |   // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. | 
 |   if (from_len < 1 + 2*mdlen + 1) { | 
 |     // 'from_len' is the length of the modulus, i.e. does not depend on the | 
 |     // particular ciphertext. | 
 |     goto decoding_err; | 
 |   } | 
 |  | 
 |   size_t dblen = from_len - mdlen - 1; | 
 |   db = OPENSSL_malloc(dblen); | 
 |   if (db == NULL) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   const uint8_t *maskedseed = from + 1; | 
 |   const uint8_t *maskeddb = from + 1 + mdlen; | 
 |  | 
 |   uint8_t seed[EVP_MAX_MD_SIZE]; | 
 |   if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { | 
 |     goto err; | 
 |   } | 
 |   for (size_t i = 0; i < mdlen; i++) { | 
 |     seed[i] ^= maskedseed[i]; | 
 |   } | 
 |  | 
 |   if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { | 
 |     goto err; | 
 |   } | 
 |   for (size_t i = 0; i < dblen; i++) { | 
 |     db[i] ^= maskeddb[i]; | 
 |   } | 
 |  | 
 |   uint8_t phash[EVP_MAX_MD_SIZE]; | 
 |   if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); | 
 |   bad |= ~constant_time_is_zero_w(from[0]); | 
 |  | 
 |   crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; | 
 |   size_t one_index = 0; | 
 |   for (size_t i = mdlen; i < dblen; i++) { | 
 |     crypto_word_t equals1 = constant_time_eq_w(db[i], 1); | 
 |     crypto_word_t equals0 = constant_time_eq_w(db[i], 0); | 
 |     one_index = | 
 |         constant_time_select_w(looking_for_one_byte & equals1, i, one_index); | 
 |     looking_for_one_byte = | 
 |         constant_time_select_w(equals1, 0, looking_for_one_byte); | 
 |     bad |= looking_for_one_byte & ~equals0; | 
 |   } | 
 |  | 
 |   bad |= looking_for_one_byte; | 
 |  | 
 |   if (bad) { | 
 |     goto decoding_err; | 
 |   } | 
 |  | 
 |   one_index++; | 
 |   size_t mlen = dblen - one_index; | 
 |   if (max_out < mlen) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out, db + one_index, mlen); | 
 |   *out_len = mlen; | 
 |   OPENSSL_free(db); | 
 |   return 1; | 
 |  | 
 | decoding_err: | 
 |   // to avoid chosen ciphertext attacks, the error message should not reveal | 
 |   // which kind of decoding error happened | 
 |   OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); | 
 |  err: | 
 |   OPENSSL_free(db); | 
 |   return 0; | 
 | } | 
 |  | 
 | static const uint8_t kPSSZeroes[] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
 |  | 
 | int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash, | 
 |                               const EVP_MD *Hash, const EVP_MD *mgf1Hash, | 
 |                               const uint8_t *EM, int sLen) { | 
 |   int i; | 
 |   int ret = 0; | 
 |   int maskedDBLen, MSBits, emLen; | 
 |   size_t hLen; | 
 |   const uint8_t *H; | 
 |   uint8_t *DB = NULL; | 
 |   EVP_MD_CTX ctx; | 
 |   uint8_t H_[EVP_MAX_MD_SIZE]; | 
 |   EVP_MD_CTX_init(&ctx); | 
 |  | 
 |   if (mgf1Hash == NULL) { | 
 |     mgf1Hash = Hash; | 
 |   } | 
 |  | 
 |   hLen = EVP_MD_size(Hash); | 
 |  | 
 |   // Negative sLen has special meanings: | 
 |   //	-1	sLen == hLen | 
 |   //	-2	salt length is autorecovered from signature | 
 |   //	-N	reserved | 
 |   if (sLen == -1) { | 
 |     sLen = hLen; | 
 |   } else if (sLen == -2) { | 
 |     sLen = -2; | 
 |   } else if (sLen < -2) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; | 
 |   emLen = RSA_size(rsa); | 
 |   if (EM[0] & (0xFF << MSBits)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID); | 
 |     goto err; | 
 |   } | 
 |   if (MSBits == 0) { | 
 |     EM++; | 
 |     emLen--; | 
 |   } | 
 |   if (emLen < (int)hLen + 2 || emLen < ((int)hLen + sLen + 2)) { | 
 |     // sLen can be small negative | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     goto err; | 
 |   } | 
 |   if (EM[emLen - 1] != 0xbc) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID); | 
 |     goto err; | 
 |   } | 
 |   maskedDBLen = emLen - hLen - 1; | 
 |   H = EM + maskedDBLen; | 
 |   DB = OPENSSL_malloc(maskedDBLen); | 
 |   if (!DB) { | 
 |     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
 |     goto err; | 
 |   } | 
 |   if (!PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash)) { | 
 |     goto err; | 
 |   } | 
 |   for (i = 0; i < maskedDBLen; i++) { | 
 |     DB[i] ^= EM[i]; | 
 |   } | 
 |   if (MSBits) { | 
 |     DB[0] &= 0xFF >> (8 - MSBits); | 
 |   } | 
 |   for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) { | 
 |     ; | 
 |   } | 
 |   if (DB[i++] != 0x1) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED); | 
 |     goto err; | 
 |   } | 
 |   if (sLen >= 0 && (maskedDBLen - i) != sLen) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); | 
 |     goto err; | 
 |   } | 
 |   if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || | 
 |       !EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) || | 
 |       !EVP_DigestUpdate(&ctx, mHash, hLen) || | 
 |       !EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i) || | 
 |       !EVP_DigestFinal_ex(&ctx, H_, NULL)) { | 
 |     goto err; | 
 |   } | 
 |   if (OPENSSL_memcmp(H_, H, hLen)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); | 
 |     ret = 0; | 
 |   } else { | 
 |     ret = 1; | 
 |   } | 
 |  | 
 | err: | 
 |   OPENSSL_free(DB); | 
 |   EVP_MD_CTX_cleanup(&ctx); | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM, | 
 |                                    const unsigned char *mHash, | 
 |                                    const EVP_MD *Hash, const EVP_MD *mgf1Hash, | 
 |                                    int sLenRequested) { | 
 |   int ret = 0; | 
 |   size_t maskedDBLen, MSBits, emLen; | 
 |   size_t hLen; | 
 |   unsigned char *H, *salt = NULL, *p; | 
 |  | 
 |   if (mgf1Hash == NULL) { | 
 |     mgf1Hash = Hash; | 
 |   } | 
 |  | 
 |   hLen = EVP_MD_size(Hash); | 
 |  | 
 |   if (BN_is_zero(rsa->n)) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; | 
 |   emLen = RSA_size(rsa); | 
 |   if (MSBits == 0) { | 
 |     assert(emLen >= 1); | 
 |     *EM++ = 0; | 
 |     emLen--; | 
 |   } | 
 |  | 
 |   if (emLen < hLen + 2) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Negative sLenRequested has special meanings: | 
 |   //   -1  sLen == hLen | 
 |   //   -2  salt length is maximized | 
 |   //   -N  reserved | 
 |   size_t sLen; | 
 |   if (sLenRequested == -1) { | 
 |     sLen = hLen; | 
 |   } else if (sLenRequested == -2) { | 
 |     sLen = emLen - hLen - 2; | 
 |   } else if (sLenRequested < 0) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); | 
 |     goto err; | 
 |   } else { | 
 |     sLen = (size_t)sLenRequested; | 
 |   } | 
 |  | 
 |   if (emLen - hLen - 2 < sLen) { | 
 |     OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (sLen > 0) { | 
 |     salt = OPENSSL_malloc(sLen); | 
 |     if (!salt) { | 
 |       OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); | 
 |       goto err; | 
 |     } | 
 |     if (!RAND_bytes(salt, sLen)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   maskedDBLen = emLen - hLen - 1; | 
 |   H = EM + maskedDBLen; | 
 |  | 
 |   EVP_MD_CTX ctx; | 
 |   EVP_MD_CTX_init(&ctx); | 
 |   int digest_ok = EVP_DigestInit_ex(&ctx, Hash, NULL) && | 
 |                   EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) && | 
 |                   EVP_DigestUpdate(&ctx, mHash, hLen) && | 
 |                   EVP_DigestUpdate(&ctx, salt, sLen) && | 
 |                   EVP_DigestFinal_ex(&ctx, H, NULL); | 
 |   EVP_MD_CTX_cleanup(&ctx); | 
 |   if (!digest_ok) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   // Generate dbMask in place then perform XOR on it | 
 |   if (!PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   p = EM; | 
 |  | 
 |   // Initial PS XORs with all zeroes which is a NOP so just update | 
 |   // pointer. Note from a test above this value is guaranteed to | 
 |   // be non-negative. | 
 |   p += emLen - sLen - hLen - 2; | 
 |   *p++ ^= 0x1; | 
 |   if (sLen > 0) { | 
 |     for (size_t i = 0; i < sLen; i++) { | 
 |       *p++ ^= salt[i]; | 
 |     } | 
 |   } | 
 |   if (MSBits) { | 
 |     EM[0] &= 0xFF >> (8 - MSBits); | 
 |   } | 
 |  | 
 |   // H is already in place so just set final 0xbc | 
 |  | 
 |   EM[emLen - 1] = 0xbc; | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   OPENSSL_free(salt); | 
 |  | 
 |   return ret; | 
 | } |