|  | /* Written by Nils Larsch for the OpenSSL project. */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 2000-2003 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    licensing@OpenSSL.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). */ | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  |  | 
|  | #include "../fipsmodule/ec/internal.h" | 
|  | #include "../bytestring/internal.h" | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | static const unsigned kParametersTag = | 
|  | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0; | 
|  | static const unsigned kPublicKeyTag = | 
|  | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 1; | 
|  |  | 
|  | EC_KEY *EC_KEY_parse_private_key(CBS *cbs, const EC_GROUP *group) { | 
|  | CBS ec_private_key, private_key; | 
|  | uint64_t version; | 
|  | if (!CBS_get_asn1(cbs, &ec_private_key, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1_uint64(&ec_private_key, &version) || | 
|  | version != 1 || | 
|  | !CBS_get_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Parse the optional parameters field. | 
|  | EC_GROUP *inner_group = NULL; | 
|  | EC_KEY *ret = NULL; | 
|  | if (CBS_peek_asn1_tag(&ec_private_key, kParametersTag)) { | 
|  | // Per SEC 1, as an alternative to omitting it, one is allowed to specify | 
|  | // this field and put in a NULL to mean inheriting this value. This was | 
|  | // omitted in a previous version of this logic without problems, so leave it | 
|  | // unimplemented. | 
|  | CBS child; | 
|  | if (!CBS_get_asn1(&ec_private_key, &child, kParametersTag)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  | inner_group = EC_KEY_parse_parameters(&child); | 
|  | if (inner_group == NULL) { | 
|  | goto err; | 
|  | } | 
|  | if (group == NULL) { | 
|  | group = inner_group; | 
|  | } else if (EC_GROUP_cmp(group, inner_group, NULL) != 0) { | 
|  | // If a group was supplied externally, it must match. | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | goto err; | 
|  | } | 
|  | if (CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (group == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_MISSING_PARAMETERS); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = EC_KEY_new(); | 
|  | if (ret == NULL || !EC_KEY_set_group(ret, group)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Although RFC 5915 specifies the length of the key, OpenSSL historically | 
|  | // got this wrong, so accept any length. See upstream's | 
|  | // 30cd4ff294252c4b6a4b69cbef6a5b4117705d22. | 
|  | ret->priv_key = | 
|  | BN_bin2bn(CBS_data(&private_key), CBS_len(&private_key), NULL); | 
|  | ret->pub_key = EC_POINT_new(group); | 
|  | if (ret->priv_key == NULL || ret->pub_key == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BN_cmp(ret->priv_key, EC_GROUP_get0_order(group)) >= 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_WRONG_ORDER); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (CBS_peek_asn1_tag(&ec_private_key, kPublicKeyTag)) { | 
|  | CBS child, public_key; | 
|  | uint8_t padding; | 
|  | if (!CBS_get_asn1(&ec_private_key, &child, kPublicKeyTag) || | 
|  | !CBS_get_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || | 
|  | // As in a SubjectPublicKeyInfo, the byte-encoded public key is then | 
|  | // encoded as a BIT STRING with bits ordered as in the DER encoding. | 
|  | !CBS_get_u8(&public_key, &padding) || | 
|  | padding != 0 || | 
|  | // Explicitly check |public_key| is non-empty to save the conversion | 
|  | // form later. | 
|  | CBS_len(&public_key) == 0 || | 
|  | !EC_POINT_oct2point(group, ret->pub_key, CBS_data(&public_key), | 
|  | CBS_len(&public_key), NULL) || | 
|  | CBS_len(&child) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Save the point conversion form. | 
|  | // TODO(davidben): Consider removing this. | 
|  | ret->conv_form = | 
|  | (point_conversion_form_t)(CBS_data(&public_key)[0] & ~0x01); | 
|  | } else { | 
|  | // Compute the public key instead. | 
|  | if (!EC_POINT_mul(group, ret->pub_key, ret->priv_key, NULL, NULL, NULL)) { | 
|  | goto err; | 
|  | } | 
|  | // Remember the original private-key-only encoding. | 
|  | // TODO(davidben): Consider removing this. | 
|  | ret->enc_flag |= EC_PKEY_NO_PUBKEY; | 
|  | } | 
|  |  | 
|  | if (CBS_len(&ec_private_key) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Ensure the resulting key is valid. | 
|  | if (!EC_KEY_check_key(ret)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | EC_GROUP_free(inner_group); | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | EC_KEY_free(ret); | 
|  | EC_GROUP_free(inner_group); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int EC_KEY_marshal_private_key(CBB *cbb, const EC_KEY *key, | 
|  | unsigned enc_flags) { | 
|  | if (key == NULL || key->group == NULL || key->priv_key == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBB ec_private_key, private_key; | 
|  | if (!CBB_add_asn1(cbb, &ec_private_key, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_uint64(&ec_private_key, 1 /* version */) || | 
|  | !CBB_add_asn1(&ec_private_key, &private_key, CBS_ASN1_OCTETSTRING) || | 
|  | !BN_bn2cbb_padded(&private_key, | 
|  | BN_num_bytes(EC_GROUP_get0_order(key->group)), | 
|  | key->priv_key)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!(enc_flags & EC_PKEY_NO_PARAMETERS)) { | 
|  | CBB child; | 
|  | if (!CBB_add_asn1(&ec_private_key, &child, kParametersTag) || | 
|  | !EC_KEY_marshal_curve_name(&child, key->group) || | 
|  | !CBB_flush(&ec_private_key)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(fork): replace this flexibility with sensible default? | 
|  | if (!(enc_flags & EC_PKEY_NO_PUBKEY) && key->pub_key != NULL) { | 
|  | CBB child, public_key; | 
|  | if (!CBB_add_asn1(&ec_private_key, &child, kPublicKeyTag) || | 
|  | !CBB_add_asn1(&child, &public_key, CBS_ASN1_BITSTRING) || | 
|  | // As in a SubjectPublicKeyInfo, the byte-encoded public key is then | 
|  | // encoded as a BIT STRING with bits ordered as in the DER encoding. | 
|  | !CBB_add_u8(&public_key, 0 /* padding */) || | 
|  | !EC_POINT_point2cbb(&public_key, key->group, key->pub_key, | 
|  | key->conv_form, NULL) || | 
|  | !CBB_flush(&ec_private_key)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CBB_flush(cbb)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_ENCODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // is_unsigned_integer returns one if |cbs| is a valid unsigned DER INTEGER and | 
|  | // zero otherwise. | 
|  | static int is_unsigned_integer(const CBS *cbs) { | 
|  | if (CBS_len(cbs) == 0) { | 
|  | return 0; | 
|  | } | 
|  | uint8_t byte = CBS_data(cbs)[0]; | 
|  | if ((byte & 0x80) || | 
|  | (byte == 0 && CBS_len(cbs) > 1 && (CBS_data(cbs)[1] & 0x80) == 0)) { | 
|  | // Negative or not minimally-encoded. | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // kPrimeFieldOID is the encoding of 1.2.840.10045.1.1. | 
|  | static const uint8_t kPrimeField[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, 0x01}; | 
|  |  | 
|  | static int parse_explicit_prime_curve(CBS *in, CBS *out_prime, CBS *out_a, | 
|  | CBS *out_b, CBS *out_base_x, | 
|  | CBS *out_base_y, CBS *out_order) { | 
|  | // See RFC 3279, section 2.3.5. Note that RFC 3279 calls this structure an | 
|  | // ECParameters while RFC 5480 calls it a SpecifiedECDomain. | 
|  | CBS params, field_id, field_type, curve, base; | 
|  | uint64_t version; | 
|  | if (!CBS_get_asn1(in, ¶ms, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1_uint64(¶ms, &version) || | 
|  | version != 1 || | 
|  | !CBS_get_asn1(¶ms, &field_id, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&field_id, &field_type, CBS_ASN1_OBJECT) || | 
|  | CBS_len(&field_type) != sizeof(kPrimeField) || | 
|  | OPENSSL_memcmp(CBS_data(&field_type), kPrimeField, sizeof(kPrimeField)) != 0 || | 
|  | !CBS_get_asn1(&field_id, out_prime, CBS_ASN1_INTEGER) || | 
|  | !is_unsigned_integer(out_prime) || | 
|  | CBS_len(&field_id) != 0 || | 
|  | !CBS_get_asn1(¶ms, &curve, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&curve, out_a, CBS_ASN1_OCTETSTRING) || | 
|  | !CBS_get_asn1(&curve, out_b, CBS_ASN1_OCTETSTRING) || | 
|  | // |curve| has an optional BIT STRING seed which we ignore. | 
|  | !CBS_get_asn1(¶ms, &base, CBS_ASN1_OCTETSTRING) || | 
|  | !CBS_get_asn1(¶ms, out_order, CBS_ASN1_INTEGER) || | 
|  | !is_unsigned_integer(out_order)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // |params| has an optional cofactor which we ignore. With the optional seed | 
|  | // in |curve|, a group already has arbitrarily many encodings. Parse enough to | 
|  | // uniquely determine the curve. | 
|  |  | 
|  | // Require that the base point use uncompressed form. | 
|  | uint8_t form; | 
|  | if (!CBS_get_u8(&base, &form) || form != POINT_CONVERSION_UNCOMPRESSED) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (CBS_len(&base) % 2 != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | size_t field_len = CBS_len(&base) / 2; | 
|  | CBS_init(out_base_x, CBS_data(&base), field_len); | 
|  | CBS_init(out_base_y, CBS_data(&base) + field_len, field_len); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // integers_equal returns one if |a| and |b| are equal, up to leading zeros, and | 
|  | // zero otherwise. | 
|  | static int integers_equal(const CBS *a, const uint8_t *b, size_t b_len) { | 
|  | // Remove leading zeros from |a| and |b|. | 
|  | CBS a_copy = *a; | 
|  | while (CBS_len(&a_copy) > 0 && CBS_data(&a_copy)[0] == 0) { | 
|  | CBS_skip(&a_copy, 1); | 
|  | } | 
|  | while (b_len > 0 && b[0] == 0) { | 
|  | b++; | 
|  | b_len--; | 
|  | } | 
|  | return CBS_mem_equal(&a_copy, b, b_len); | 
|  | } | 
|  |  | 
|  | EC_GROUP *EC_KEY_parse_curve_name(CBS *cbs) { | 
|  | CBS named_curve; | 
|  | if (!CBS_get_asn1(cbs, &named_curve, CBS_ASN1_OBJECT)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Look for a matching curve. | 
|  | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); | 
|  | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { | 
|  | const struct built_in_curve *curve = &curves->curves[i]; | 
|  | if (CBS_len(&named_curve) == curve->oid_len && | 
|  | OPENSSL_memcmp(CBS_data(&named_curve), curve->oid, curve->oid_len) == | 
|  | 0) { | 
|  | return EC_GROUP_new_by_curve_name(curve->nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int EC_KEY_marshal_curve_name(CBB *cbb, const EC_GROUP *group) { | 
|  | int nid = EC_GROUP_get_curve_name(group); | 
|  | if (nid == NID_undef) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); | 
|  | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { | 
|  | const struct built_in_curve *curve = &curves->curves[i]; | 
|  | if (curve->nid == nid) { | 
|  | CBB child; | 
|  | return CBB_add_asn1(cbb, &child, CBS_ASN1_OBJECT) && | 
|  | CBB_add_bytes(&child, curve->oid, curve->oid_len) && | 
|  | CBB_flush(cbb); | 
|  | } | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_GROUP *EC_KEY_parse_parameters(CBS *cbs) { | 
|  | if (!CBS_peek_asn1_tag(cbs, CBS_ASN1_SEQUENCE)) { | 
|  | return EC_KEY_parse_curve_name(cbs); | 
|  | } | 
|  |  | 
|  | // OpenSSL sometimes produces ECPrivateKeys with explicitly-encoded versions | 
|  | // of named curves. | 
|  | // | 
|  | // TODO(davidben): Remove support for this. | 
|  | CBS prime, a, b, base_x, base_y, order; | 
|  | if (!parse_explicit_prime_curve(cbs, &prime, &a, &b, &base_x, &base_y, | 
|  | &order)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Look for a matching prime curve. | 
|  | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); | 
|  | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { | 
|  | const struct built_in_curve *curve = &curves->curves[i]; | 
|  | const unsigned param_len = curve->param_len; | 
|  | // |curve->params| is ordered p, a, b, x, y, order, each component | 
|  | // zero-padded up to the field length. Although SEC 1 states that the | 
|  | // Field-Element-to-Octet-String conversion also pads, OpenSSL mis-encodes | 
|  | // |a| and |b|, so this comparison must allow omitting leading zeros. (This | 
|  | // is relevant for P-521 whose |b| has a leading 0.) | 
|  | if (integers_equal(&prime, curve->params, param_len) && | 
|  | integers_equal(&a, curve->params + param_len, param_len) && | 
|  | integers_equal(&b, curve->params + param_len * 2, param_len) && | 
|  | integers_equal(&base_x, curve->params + param_len * 3, param_len) && | 
|  | integers_equal(&base_y, curve->params + param_len * 4, param_len) && | 
|  | integers_equal(&order, curve->params + param_len * 5, param_len)) { | 
|  | return EC_GROUP_new_by_curve_name(curve->nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group, const EC_POINT *point, | 
|  | point_conversion_form_t form, BN_CTX *ctx) { | 
|  | size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  | uint8_t *p; | 
|  | return CBB_add_space(out, &p, len) && | 
|  | EC_POINT_point2oct(group, point, form, p, len, ctx) == len; | 
|  | } | 
|  |  | 
|  | EC_KEY *d2i_ECPrivateKey(EC_KEY **out, const uint8_t **inp, long len) { | 
|  | // This function treats its |out| parameter differently from other |d2i| | 
|  | // functions. If supplied, take the group from |*out|. | 
|  | const EC_GROUP *group = NULL; | 
|  | if (out != NULL && *out != NULL) { | 
|  | group = EC_KEY_get0_group(*out); | 
|  | } | 
|  |  | 
|  | if (len < 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return NULL; | 
|  | } | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | EC_KEY *ret = EC_KEY_parse_private_key(&cbs, group); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (out != NULL) { | 
|  | EC_KEY_free(*out); | 
|  | *out = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp) { | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !EC_KEY_marshal_private_key(&cbb, key, EC_KEY_get_enc_flags(key))) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } | 
|  |  | 
|  | EC_KEY *d2i_ECParameters(EC_KEY **out_key, const uint8_t **inp, long len) { | 
|  | if (len < 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, *inp, (size_t)len); | 
|  | EC_GROUP *group = EC_KEY_parse_parameters(&cbs); | 
|  | if (group == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EC_KEY *ret = EC_KEY_new(); | 
|  | if (ret == NULL || !EC_KEY_set_group(ret, group)) { | 
|  | EC_GROUP_free(group); | 
|  | EC_KEY_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | EC_GROUP_free(group); | 
|  |  | 
|  | if (out_key != NULL) { | 
|  | EC_KEY_free(*out_key); | 
|  | *out_key = ret; | 
|  | } | 
|  | *inp = CBS_data(&cbs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2d_ECParameters(const EC_KEY *key, uint8_t **outp) { | 
|  | if (key == NULL || key->group == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | CBB cbb; | 
|  | if (!CBB_init(&cbb, 0) || | 
|  | !EC_KEY_marshal_curve_name(&cbb, key->group)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return -1; | 
|  | } | 
|  | return CBB_finish_i2d(&cbb, outp); | 
|  | } | 
|  |  | 
|  | EC_KEY *o2i_ECPublicKey(EC_KEY **keyp, const uint8_t **inp, long len) { | 
|  | EC_KEY *ret = NULL; | 
|  |  | 
|  | if (keyp == NULL || *keyp == NULL || (*keyp)->group == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return NULL; | 
|  | } | 
|  | ret = *keyp; | 
|  | if (ret->pub_key == NULL && | 
|  | (ret->pub_key = EC_POINT_new(ret->group)) == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  | if (!EC_POINT_oct2point(ret->group, ret->pub_key, *inp, len, NULL)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); | 
|  | return NULL; | 
|  | } | 
|  | // save the point conversion form | 
|  | ret->conv_form = (point_conversion_form_t)(*inp[0] & ~0x01); | 
|  | *inp += len; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int i2o_ECPublicKey(const EC_KEY *key, uint8_t **outp) { | 
|  | size_t buf_len = 0; | 
|  | int new_buffer = 0; | 
|  |  | 
|  | if (key == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | buf_len = EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, NULL, | 
|  | 0, NULL); | 
|  |  | 
|  | if (outp == NULL || buf_len == 0) { | 
|  | // out == NULL => just return the length of the octet string | 
|  | return buf_len; | 
|  | } | 
|  |  | 
|  | if (*outp == NULL) { | 
|  | *outp = OPENSSL_malloc(buf_len); | 
|  | if (*outp == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | new_buffer = 1; | 
|  | } | 
|  | if (!EC_POINT_point2oct(key->group, key->pub_key, key->conv_form, *outp, | 
|  | buf_len, NULL)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); | 
|  | if (new_buffer) { | 
|  | OPENSSL_free(*outp); | 
|  | *outp = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!new_buffer) { | 
|  | *outp += buf_len; | 
|  | } | 
|  | return buf_len; | 
|  | } |