|  | /* Copyright (c) 2014, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | // This implementation of poly1305 is by Andrew Moon | 
|  | // (https://github.com/floodyberry/poly1305-donna) and released as public | 
|  | // domain. It implements SIMD vectorization based on the algorithm described in | 
|  | // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte | 
|  | // block size | 
|  |  | 
|  | #include <openssl/poly1305.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | #if !defined(OPENSSL_WINDOWS) && defined(OPENSSL_X86_64) | 
|  |  | 
|  | #include <emmintrin.h> | 
|  |  | 
|  | #define U8TO64_LE(m) (*(const uint64_t *)(m)) | 
|  | #define U8TO32_LE(m) (*(const uint32_t *)(m)) | 
|  | #define U64TO8_LE(m, v) (*(uint64_t *)(m)) = v | 
|  |  | 
|  | typedef __m128i xmmi; | 
|  |  | 
|  | static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = { | 
|  | (1 << 26) - 1, 0, (1 << 26) - 1, 0}; | 
|  | static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0}; | 
|  | static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = { | 
|  | (1 << 24), 0, (1 << 24), 0}; | 
|  |  | 
|  | static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; } | 
|  |  | 
|  | static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; } | 
|  |  | 
|  | static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) { | 
|  | return (uint128_t)a * b; | 
|  | } | 
|  |  | 
|  | static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; } | 
|  |  | 
|  | static inline uint64_t shr128(uint128_t v, const int shift) { | 
|  | return (uint64_t)(v >> shift); | 
|  | } | 
|  |  | 
|  | static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) { | 
|  | return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift); | 
|  | } | 
|  |  | 
|  | typedef struct poly1305_power_t { | 
|  | union { | 
|  | xmmi v; | 
|  | uint64_t u[2]; | 
|  | uint32_t d[4]; | 
|  | } R20, R21, R22, R23, R24, S21, S22, S23, S24; | 
|  | } poly1305_power; | 
|  |  | 
|  | typedef struct poly1305_state_internal_t { | 
|  | poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144 | 
|  | bytes of free storage */ | 
|  | union { | 
|  | xmmi H[5];  //  80 bytes | 
|  | uint64_t HH[10]; | 
|  | }; | 
|  | // uint64_t r0,r1,r2;       [24 bytes] | 
|  | // uint64_t pad0,pad1;      [16 bytes] | 
|  | uint64_t started;        //   8 bytes | 
|  | uint64_t leftover;       //   8 bytes | 
|  | uint8_t buffer[64];      //  64 bytes | 
|  | } poly1305_state_internal; /* 448 bytes total + 63 bytes for | 
|  | alignment = 511 bytes raw */ | 
|  |  | 
|  | static inline poly1305_state_internal *poly1305_aligned_state( | 
|  | poly1305_state *state) { | 
|  | return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63); | 
|  | } | 
|  |  | 
|  | // copy 0-63 bytes | 
|  | static inline void | 
|  | poly1305_block_copy(uint8_t *dst, const uint8_t *src, size_t bytes) { | 
|  | size_t offset = src - dst; | 
|  | if (bytes & 32) { | 
|  | _mm_storeu_si128((xmmi *)(dst + 0), | 
|  | _mm_loadu_si128((const xmmi *)(dst + offset + 0))); | 
|  | _mm_storeu_si128((xmmi *)(dst + 16), | 
|  | _mm_loadu_si128((const xmmi *)(dst + offset + 16))); | 
|  | dst += 32; | 
|  | } | 
|  | if (bytes & 16) { | 
|  | _mm_storeu_si128((xmmi *)dst, _mm_loadu_si128((const xmmi *)(dst + offset))); | 
|  | dst += 16; | 
|  | } | 
|  | if (bytes & 8) { | 
|  | *(uint64_t *)dst = *(const uint64_t *)(dst + offset); | 
|  | dst += 8; | 
|  | } | 
|  | if (bytes & 4) { | 
|  | *(uint32_t *)dst = *(const uint32_t *)(dst + offset); | 
|  | dst += 4; | 
|  | } | 
|  | if (bytes & 2) { | 
|  | *(uint16_t *)dst = *(uint16_t *)(dst + offset); | 
|  | dst += 2; | 
|  | } | 
|  | if (bytes & 1) { | 
|  | *(uint8_t *)dst = *(uint8_t *)(dst + offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zero 0-15 bytes | 
|  | static inline void poly1305_block_zero(uint8_t *dst, size_t bytes) { | 
|  | if (bytes & 8) { | 
|  | *(uint64_t *)dst = 0; | 
|  | dst += 8; | 
|  | } | 
|  | if (bytes & 4) { | 
|  | *(uint32_t *)dst = 0; | 
|  | dst += 4; | 
|  | } | 
|  | if (bytes & 2) { | 
|  | *(uint16_t *)dst = 0; | 
|  | dst += 2; | 
|  | } | 
|  | if (bytes & 1) { | 
|  | *(uint8_t *)dst = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline size_t poly1305_min(size_t a, size_t b) { | 
|  | return (a < b) ? a : b; | 
|  | } | 
|  |  | 
|  | void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) { | 
|  | poly1305_state_internal *st = poly1305_aligned_state(state); | 
|  | poly1305_power *p; | 
|  | uint64_t r0, r1, r2; | 
|  | uint64_t t0, t1; | 
|  |  | 
|  | // clamp key | 
|  | t0 = U8TO64_LE(key + 0); | 
|  | t1 = U8TO64_LE(key + 8); | 
|  | r0 = t0 & 0xffc0fffffff; | 
|  | t0 >>= 44; | 
|  | t0 |= t1 << 20; | 
|  | r1 = t0 & 0xfffffc0ffff; | 
|  | t1 >>= 24; | 
|  | r2 = t1 & 0x00ffffffc0f; | 
|  |  | 
|  | // store r in un-used space of st->P[1] | 
|  | p = &st->P[1]; | 
|  | p->R20.d[1] = (uint32_t)(r0); | 
|  | p->R20.d[3] = (uint32_t)(r0 >> 32); | 
|  | p->R21.d[1] = (uint32_t)(r1); | 
|  | p->R21.d[3] = (uint32_t)(r1 >> 32); | 
|  | p->R22.d[1] = (uint32_t)(r2); | 
|  | p->R22.d[3] = (uint32_t)(r2 >> 32); | 
|  |  | 
|  | // store pad | 
|  | p->R23.d[1] = U8TO32_LE(key + 16); | 
|  | p->R23.d[3] = U8TO32_LE(key + 20); | 
|  | p->R24.d[1] = U8TO32_LE(key + 24); | 
|  | p->R24.d[3] = U8TO32_LE(key + 28); | 
|  |  | 
|  | // H = 0 | 
|  | st->H[0] = _mm_setzero_si128(); | 
|  | st->H[1] = _mm_setzero_si128(); | 
|  | st->H[2] = _mm_setzero_si128(); | 
|  | st->H[3] = _mm_setzero_si128(); | 
|  | st->H[4] = _mm_setzero_si128(); | 
|  |  | 
|  | st->started = 0; | 
|  | st->leftover = 0; | 
|  | } | 
|  |  | 
|  | static void poly1305_first_block(poly1305_state_internal *st, | 
|  | const uint8_t *m) { | 
|  | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); | 
|  | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); | 
|  | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); | 
|  | xmmi T5, T6; | 
|  | poly1305_power *p; | 
|  | uint128_t d[3]; | 
|  | uint64_t r0, r1, r2; | 
|  | uint64_t r20, r21, r22, s22; | 
|  | uint64_t pad0, pad1; | 
|  | uint64_t c; | 
|  | uint64_t i; | 
|  |  | 
|  | // pull out stored info | 
|  | p = &st->P[1]; | 
|  |  | 
|  | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; | 
|  | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; | 
|  | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; | 
|  | pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; | 
|  | pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; | 
|  |  | 
|  | // compute powers r^2,r^4 | 
|  | r20 = r0; | 
|  | r21 = r1; | 
|  | r22 = r2; | 
|  | for (i = 0; i < 2; i++) { | 
|  | s22 = r22 * (5 << 2); | 
|  |  | 
|  | d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22)); | 
|  | d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21)); | 
|  | d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20)); | 
|  |  | 
|  | r20 = lo128(d[0]) & 0xfffffffffff; | 
|  | c = shr128(d[0], 44); | 
|  | d[1] = add128_64(d[1], c); | 
|  | r21 = lo128(d[1]) & 0xfffffffffff; | 
|  | c = shr128(d[1], 44); | 
|  | d[2] = add128_64(d[2], c); | 
|  | r22 = lo128(d[2]) & 0x3ffffffffff; | 
|  | c = shr128(d[2], 42); | 
|  | r20 += c * 5; | 
|  | c = (r20 >> 44); | 
|  | r20 = r20 & 0xfffffffffff; | 
|  | r21 += c; | 
|  |  | 
|  | p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff), | 
|  | _MM_SHUFFLE(1, 0, 1, 0)); | 
|  | p->R21.v = _mm_shuffle_epi32( | 
|  | _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), | 
|  | _MM_SHUFFLE(1, 0, 1, 0)); | 
|  | p->R22.v = | 
|  | _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff), | 
|  | _MM_SHUFFLE(1, 0, 1, 0)); | 
|  | p->R23.v = _mm_shuffle_epi32( | 
|  | _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), | 
|  | _MM_SHUFFLE(1, 0, 1, 0)); | 
|  | p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))), | 
|  | _MM_SHUFFLE(1, 0, 1, 0)); | 
|  | p->S21.v = _mm_mul_epu32(p->R21.v, FIVE); | 
|  | p->S22.v = _mm_mul_epu32(p->R22.v, FIVE); | 
|  | p->S23.v = _mm_mul_epu32(p->R23.v, FIVE); | 
|  | p->S24.v = _mm_mul_epu32(p->R24.v, FIVE); | 
|  | p--; | 
|  | } | 
|  |  | 
|  | // put saved info back | 
|  | p = &st->P[1]; | 
|  | p->R20.d[1] = (uint32_t)(r0); | 
|  | p->R20.d[3] = (uint32_t)(r0 >> 32); | 
|  | p->R21.d[1] = (uint32_t)(r1); | 
|  | p->R21.d[3] = (uint32_t)(r1 >> 32); | 
|  | p->R22.d[1] = (uint32_t)(r2); | 
|  | p->R22.d[3] = (uint32_t)(r2 >> 32); | 
|  | p->R23.d[1] = (uint32_t)(pad0); | 
|  | p->R23.d[3] = (uint32_t)(pad0 >> 32); | 
|  | p->R24.d[1] = (uint32_t)(pad1); | 
|  | p->R24.d[3] = (uint32_t)(pad1 >> 32); | 
|  |  | 
|  | // H = [Mx,My] | 
|  | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 16))); | 
|  | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 24))); | 
|  | st->H[0] = _mm_and_si128(MMASK, T5); | 
|  | st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); | 
|  | st->H[2] = _mm_and_si128(MMASK, T5); | 
|  | st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); | 
|  | } | 
|  |  | 
|  | static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, | 
|  | size_t bytes) { | 
|  | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); | 
|  | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); | 
|  | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); | 
|  |  | 
|  | poly1305_power *p; | 
|  | xmmi H0, H1, H2, H3, H4; | 
|  | xmmi T0, T1, T2, T3, T4, T5, T6; | 
|  | xmmi M0, M1, M2, M3, M4; | 
|  | xmmi C1, C2; | 
|  |  | 
|  | H0 = st->H[0]; | 
|  | H1 = st->H[1]; | 
|  | H2 = st->H[2]; | 
|  | H3 = st->H[3]; | 
|  | H4 = st->H[4]; | 
|  |  | 
|  | while (bytes >= 64) { | 
|  | // H *= [r^4,r^4] | 
|  | p = &st->P[0]; | 
|  | T0 = _mm_mul_epu32(H0, p->R20.v); | 
|  | T1 = _mm_mul_epu32(H0, p->R21.v); | 
|  | T2 = _mm_mul_epu32(H0, p->R22.v); | 
|  | T3 = _mm_mul_epu32(H0, p->R23.v); | 
|  | T4 = _mm_mul_epu32(H0, p->R24.v); | 
|  | T5 = _mm_mul_epu32(H1, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R20.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H2, p->S24.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S22.v); | 
|  | T6 = _mm_mul_epu32(H3, p->S23.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S21.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S22.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R21.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R22.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->R20.v); | 
|  | T6 = _mm_mul_epu32(H2, p->R21.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H3, p->R20.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S24.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R23.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H2, p->R22.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H3, p->R21.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H4, p->R20.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  |  | 
|  | // H += [Mx,My]*[r^2,r^2] | 
|  | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 16))); | 
|  | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 24))); | 
|  | M0 = _mm_and_si128(MMASK, T5); | 
|  | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); | 
|  | M2 = _mm_and_si128(MMASK, T5); | 
|  | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); | 
|  |  | 
|  | p = &st->P[1]; | 
|  | T5 = _mm_mul_epu32(M0, p->R20.v); | 
|  | T6 = _mm_mul_epu32(M0, p->R21.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(M1, p->S24.v); | 
|  | T6 = _mm_mul_epu32(M1, p->R20.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(M2, p->S23.v); | 
|  | T6 = _mm_mul_epu32(M2, p->S24.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(M3, p->S22.v); | 
|  | T6 = _mm_mul_epu32(M3, p->S23.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(M4, p->S21.v); | 
|  | T6 = _mm_mul_epu32(M4, p->S22.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(M0, p->R22.v); | 
|  | T6 = _mm_mul_epu32(M0, p->R23.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(M1, p->R21.v); | 
|  | T6 = _mm_mul_epu32(M1, p->R22.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(M2, p->R20.v); | 
|  | T6 = _mm_mul_epu32(M2, p->R21.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(M3, p->S24.v); | 
|  | T6 = _mm_mul_epu32(M3, p->R20.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(M4, p->S23.v); | 
|  | T6 = _mm_mul_epu32(M4, p->S24.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(M0, p->R24.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(M1, p->R23.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(M2, p->R22.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(M3, p->R21.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(M4, p->R20.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  |  | 
|  | // H += [Mx,My] | 
|  | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 48))); | 
|  | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 56))); | 
|  | M0 = _mm_and_si128(MMASK, T5); | 
|  | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); | 
|  | M2 = _mm_and_si128(MMASK, T5); | 
|  | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); | 
|  |  | 
|  | T0 = _mm_add_epi64(T0, M0); | 
|  | T1 = _mm_add_epi64(T1, M1); | 
|  | T2 = _mm_add_epi64(T2, M2); | 
|  | T3 = _mm_add_epi64(T3, M3); | 
|  | T4 = _mm_add_epi64(T4, M4); | 
|  |  | 
|  | // reduce | 
|  | C1 = _mm_srli_epi64(T0, 26); | 
|  | C2 = _mm_srli_epi64(T3, 26); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T1 = _mm_add_epi64(T1, C1); | 
|  | T4 = _mm_add_epi64(T4, C2); | 
|  | C1 = _mm_srli_epi64(T1, 26); | 
|  | C2 = _mm_srli_epi64(T4, 26); | 
|  | T1 = _mm_and_si128(T1, MMASK); | 
|  | T4 = _mm_and_si128(T4, MMASK); | 
|  | T2 = _mm_add_epi64(T2, C1); | 
|  | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); | 
|  | C1 = _mm_srli_epi64(T2, 26); | 
|  | C2 = _mm_srli_epi64(T0, 26); | 
|  | T2 = _mm_and_si128(T2, MMASK); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_add_epi64(T3, C1); | 
|  | T1 = _mm_add_epi64(T1, C2); | 
|  | C1 = _mm_srli_epi64(T3, 26); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T4 = _mm_add_epi64(T4, C1); | 
|  |  | 
|  | // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) | 
|  | H0 = T0; | 
|  | H1 = T1; | 
|  | H2 = T2; | 
|  | H3 = T3; | 
|  | H4 = T4; | 
|  |  | 
|  | m += 64; | 
|  | bytes -= 64; | 
|  | } | 
|  |  | 
|  | st->H[0] = H0; | 
|  | st->H[1] = H1; | 
|  | st->H[2] = H2; | 
|  | st->H[3] = H3; | 
|  | st->H[4] = H4; | 
|  | } | 
|  |  | 
|  | static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m, | 
|  | size_t bytes) { | 
|  | const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); | 
|  | const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); | 
|  | const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); | 
|  |  | 
|  | poly1305_power *p; | 
|  | xmmi H0, H1, H2, H3, H4; | 
|  | xmmi M0, M1, M2, M3, M4; | 
|  | xmmi T0, T1, T2, T3, T4, T5, T6; | 
|  | xmmi C1, C2; | 
|  |  | 
|  | uint64_t r0, r1, r2; | 
|  | uint64_t t0, t1, t2, t3, t4; | 
|  | uint64_t c; | 
|  | size_t consumed = 0; | 
|  |  | 
|  | H0 = st->H[0]; | 
|  | H1 = st->H[1]; | 
|  | H2 = st->H[2]; | 
|  | H3 = st->H[3]; | 
|  | H4 = st->H[4]; | 
|  |  | 
|  | // p = [r^2,r^2] | 
|  | p = &st->P[1]; | 
|  |  | 
|  | if (bytes >= 32) { | 
|  | // H *= [r^2,r^2] | 
|  | T0 = _mm_mul_epu32(H0, p->R20.v); | 
|  | T1 = _mm_mul_epu32(H0, p->R21.v); | 
|  | T2 = _mm_mul_epu32(H0, p->R22.v); | 
|  | T3 = _mm_mul_epu32(H0, p->R23.v); | 
|  | T4 = _mm_mul_epu32(H0, p->R24.v); | 
|  | T5 = _mm_mul_epu32(H1, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R20.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H2, p->S24.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S22.v); | 
|  | T6 = _mm_mul_epu32(H3, p->S23.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S21.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S22.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R21.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R22.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->R20.v); | 
|  | T6 = _mm_mul_epu32(H2, p->R21.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H3, p->R20.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S24.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R23.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H2, p->R22.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H3, p->R21.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H4, p->R20.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  |  | 
|  | // H += [Mx,My] | 
|  | T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 16))); | 
|  | T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), | 
|  | _mm_loadl_epi64((const xmmi *)(m + 24))); | 
|  | M0 = _mm_and_si128(MMASK, T5); | 
|  | M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); | 
|  | M2 = _mm_and_si128(MMASK, T5); | 
|  | M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); | 
|  | M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); | 
|  |  | 
|  | T0 = _mm_add_epi64(T0, M0); | 
|  | T1 = _mm_add_epi64(T1, M1); | 
|  | T2 = _mm_add_epi64(T2, M2); | 
|  | T3 = _mm_add_epi64(T3, M3); | 
|  | T4 = _mm_add_epi64(T4, M4); | 
|  |  | 
|  | // reduce | 
|  | C1 = _mm_srli_epi64(T0, 26); | 
|  | C2 = _mm_srli_epi64(T3, 26); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T1 = _mm_add_epi64(T1, C1); | 
|  | T4 = _mm_add_epi64(T4, C2); | 
|  | C1 = _mm_srli_epi64(T1, 26); | 
|  | C2 = _mm_srli_epi64(T4, 26); | 
|  | T1 = _mm_and_si128(T1, MMASK); | 
|  | T4 = _mm_and_si128(T4, MMASK); | 
|  | T2 = _mm_add_epi64(T2, C1); | 
|  | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); | 
|  | C1 = _mm_srli_epi64(T2, 26); | 
|  | C2 = _mm_srli_epi64(T0, 26); | 
|  | T2 = _mm_and_si128(T2, MMASK); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_add_epi64(T3, C1); | 
|  | T1 = _mm_add_epi64(T1, C2); | 
|  | C1 = _mm_srli_epi64(T3, 26); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T4 = _mm_add_epi64(T4, C1); | 
|  |  | 
|  | // H = (H*[r^2,r^2] + [Mx,My]) | 
|  | H0 = T0; | 
|  | H1 = T1; | 
|  | H2 = T2; | 
|  | H3 = T3; | 
|  | H4 = T4; | 
|  |  | 
|  | consumed = 32; | 
|  | } | 
|  |  | 
|  | // finalize, H *= [r^2,r] | 
|  | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; | 
|  | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; | 
|  | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; | 
|  |  | 
|  | p->R20.d[2] = (uint32_t)(r0)&0x3ffffff; | 
|  | p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; | 
|  | p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff; | 
|  | p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; | 
|  | p->R24.d[2] = (uint32_t)((r2 >> 16)); | 
|  | p->S21.d[2] = p->R21.d[2] * 5; | 
|  | p->S22.d[2] = p->R22.d[2] * 5; | 
|  | p->S23.d[2] = p->R23.d[2] * 5; | 
|  | p->S24.d[2] = p->R24.d[2] * 5; | 
|  |  | 
|  | // H *= [r^2,r] | 
|  | T0 = _mm_mul_epu32(H0, p->R20.v); | 
|  | T1 = _mm_mul_epu32(H0, p->R21.v); | 
|  | T2 = _mm_mul_epu32(H0, p->R22.v); | 
|  | T3 = _mm_mul_epu32(H0, p->R23.v); | 
|  | T4 = _mm_mul_epu32(H0, p->R24.v); | 
|  | T5 = _mm_mul_epu32(H1, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R20.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H2, p->S24.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S22.v); | 
|  | T6 = _mm_mul_epu32(H3, p->S23.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S21.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S22.v); | 
|  | T0 = _mm_add_epi64(T0, T5); | 
|  | T1 = _mm_add_epi64(T1, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R21.v); | 
|  | T6 = _mm_mul_epu32(H1, p->R22.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H2, p->R20.v); | 
|  | T6 = _mm_mul_epu32(H2, p->R21.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H3, p->S24.v); | 
|  | T6 = _mm_mul_epu32(H3, p->R20.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H4, p->S23.v); | 
|  | T6 = _mm_mul_epu32(H4, p->S24.v); | 
|  | T2 = _mm_add_epi64(T2, T5); | 
|  | T3 = _mm_add_epi64(T3, T6); | 
|  | T5 = _mm_mul_epu32(H1, p->R23.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H2, p->R22.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H3, p->R21.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  | T5 = _mm_mul_epu32(H4, p->R20.v); | 
|  | T4 = _mm_add_epi64(T4, T5); | 
|  |  | 
|  | C1 = _mm_srli_epi64(T0, 26); | 
|  | C2 = _mm_srli_epi64(T3, 26); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T1 = _mm_add_epi64(T1, C1); | 
|  | T4 = _mm_add_epi64(T4, C2); | 
|  | C1 = _mm_srli_epi64(T1, 26); | 
|  | C2 = _mm_srli_epi64(T4, 26); | 
|  | T1 = _mm_and_si128(T1, MMASK); | 
|  | T4 = _mm_and_si128(T4, MMASK); | 
|  | T2 = _mm_add_epi64(T2, C1); | 
|  | T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); | 
|  | C1 = _mm_srli_epi64(T2, 26); | 
|  | C2 = _mm_srli_epi64(T0, 26); | 
|  | T2 = _mm_and_si128(T2, MMASK); | 
|  | T0 = _mm_and_si128(T0, MMASK); | 
|  | T3 = _mm_add_epi64(T3, C1); | 
|  | T1 = _mm_add_epi64(T1, C2); | 
|  | C1 = _mm_srli_epi64(T3, 26); | 
|  | T3 = _mm_and_si128(T3, MMASK); | 
|  | T4 = _mm_add_epi64(T4, C1); | 
|  |  | 
|  | // H = H[0]+H[1] | 
|  | H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8)); | 
|  | H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8)); | 
|  | H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8)); | 
|  | H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8)); | 
|  | H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8)); | 
|  |  | 
|  | t0 = _mm_cvtsi128_si32(H0); | 
|  | c = (t0 >> 26); | 
|  | t0 &= 0x3ffffff; | 
|  | t1 = _mm_cvtsi128_si32(H1) + c; | 
|  | c = (t1 >> 26); | 
|  | t1 &= 0x3ffffff; | 
|  | t2 = _mm_cvtsi128_si32(H2) + c; | 
|  | c = (t2 >> 26); | 
|  | t2 &= 0x3ffffff; | 
|  | t3 = _mm_cvtsi128_si32(H3) + c; | 
|  | c = (t3 >> 26); | 
|  | t3 &= 0x3ffffff; | 
|  | t4 = _mm_cvtsi128_si32(H4) + c; | 
|  | c = (t4 >> 26); | 
|  | t4 &= 0x3ffffff; | 
|  | t0 = t0 + (c * 5); | 
|  | c = (t0 >> 26); | 
|  | t0 &= 0x3ffffff; | 
|  | t1 = t1 + c; | 
|  |  | 
|  | st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff); | 
|  | st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff); | 
|  | st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff); | 
|  |  | 
|  | return consumed; | 
|  | } | 
|  |  | 
|  | void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m, | 
|  | size_t bytes) { | 
|  | poly1305_state_internal *st = poly1305_aligned_state(state); | 
|  | size_t want; | 
|  |  | 
|  | // need at least 32 initial bytes to start the accelerated branch | 
|  | if (!st->started) { | 
|  | if ((st->leftover == 0) && (bytes > 32)) { | 
|  | poly1305_first_block(st, m); | 
|  | m += 32; | 
|  | bytes -= 32; | 
|  | } else { | 
|  | want = poly1305_min(32 - st->leftover, bytes); | 
|  | poly1305_block_copy(st->buffer + st->leftover, m, want); | 
|  | bytes -= want; | 
|  | m += want; | 
|  | st->leftover += want; | 
|  | if ((st->leftover < 32) || (bytes == 0)) { | 
|  | return; | 
|  | } | 
|  | poly1305_first_block(st, st->buffer); | 
|  | st->leftover = 0; | 
|  | } | 
|  | st->started = 1; | 
|  | } | 
|  |  | 
|  | // handle leftover | 
|  | if (st->leftover) { | 
|  | want = poly1305_min(64 - st->leftover, bytes); | 
|  | poly1305_block_copy(st->buffer + st->leftover, m, want); | 
|  | bytes -= want; | 
|  | m += want; | 
|  | st->leftover += want; | 
|  | if (st->leftover < 64) { | 
|  | return; | 
|  | } | 
|  | poly1305_blocks(st, st->buffer, 64); | 
|  | st->leftover = 0; | 
|  | } | 
|  |  | 
|  | // process 64 byte blocks | 
|  | if (bytes >= 64) { | 
|  | want = (bytes & ~63); | 
|  | poly1305_blocks(st, m, want); | 
|  | m += want; | 
|  | bytes -= want; | 
|  | } | 
|  |  | 
|  | if (bytes) { | 
|  | poly1305_block_copy(st->buffer + st->leftover, m, bytes); | 
|  | st->leftover += bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) { | 
|  | poly1305_state_internal *st = poly1305_aligned_state(state); | 
|  | size_t leftover = st->leftover; | 
|  | uint8_t *m = st->buffer; | 
|  | uint128_t d[3]; | 
|  | uint64_t h0, h1, h2; | 
|  | uint64_t t0, t1; | 
|  | uint64_t g0, g1, g2, c, nc; | 
|  | uint64_t r0, r1, r2, s1, s2; | 
|  | poly1305_power *p; | 
|  |  | 
|  | if (st->started) { | 
|  | size_t consumed = poly1305_combine(st, m, leftover); | 
|  | leftover -= consumed; | 
|  | m += consumed; | 
|  | } | 
|  |  | 
|  | // st->HH will either be 0 or have the combined result | 
|  | h0 = st->HH[0]; | 
|  | h1 = st->HH[1]; | 
|  | h2 = st->HH[2]; | 
|  |  | 
|  | p = &st->P[1]; | 
|  | r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; | 
|  | r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; | 
|  | r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; | 
|  | s1 = r1 * (5 << 2); | 
|  | s2 = r2 * (5 << 2); | 
|  |  | 
|  | if (leftover < 16) { | 
|  | goto poly1305_donna_atmost15bytes; | 
|  | } | 
|  |  | 
|  | poly1305_donna_atleast16bytes: | 
|  | t0 = U8TO64_LE(m + 0); | 
|  | t1 = U8TO64_LE(m + 8); | 
|  | h0 += t0 & 0xfffffffffff; | 
|  | t0 = shr128_pair(t1, t0, 44); | 
|  | h1 += t0 & 0xfffffffffff; | 
|  | h2 += (t1 >> 24) | ((uint64_t)1 << 40); | 
|  |  | 
|  | poly1305_donna_mul: | 
|  | d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), | 
|  | mul64x64_128(h2, s1)); | 
|  | d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), | 
|  | mul64x64_128(h2, s2)); | 
|  | d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), | 
|  | mul64x64_128(h2, r0)); | 
|  | h0 = lo128(d[0]) & 0xfffffffffff; | 
|  | c = shr128(d[0], 44); | 
|  | d[1] = add128_64(d[1], c); | 
|  | h1 = lo128(d[1]) & 0xfffffffffff; | 
|  | c = shr128(d[1], 44); | 
|  | d[2] = add128_64(d[2], c); | 
|  | h2 = lo128(d[2]) & 0x3ffffffffff; | 
|  | c = shr128(d[2], 42); | 
|  | h0 += c * 5; | 
|  |  | 
|  | m += 16; | 
|  | leftover -= 16; | 
|  | if (leftover >= 16) { | 
|  | goto poly1305_donna_atleast16bytes; | 
|  | } | 
|  |  | 
|  | // final bytes | 
|  | poly1305_donna_atmost15bytes: | 
|  | if (!leftover) { | 
|  | goto poly1305_donna_finish; | 
|  | } | 
|  |  | 
|  | m[leftover++] = 1; | 
|  | poly1305_block_zero(m + leftover, 16 - leftover); | 
|  | leftover = 16; | 
|  |  | 
|  | t0 = U8TO64_LE(m + 0); | 
|  | t1 = U8TO64_LE(m + 8); | 
|  | h0 += t0 & 0xfffffffffff; | 
|  | t0 = shr128_pair(t1, t0, 44); | 
|  | h1 += t0 & 0xfffffffffff; | 
|  | h2 += (t1 >> 24); | 
|  |  | 
|  | goto poly1305_donna_mul; | 
|  |  | 
|  | poly1305_donna_finish: | 
|  | c = (h0 >> 44); | 
|  | h0 &= 0xfffffffffff; | 
|  | h1 += c; | 
|  | c = (h1 >> 44); | 
|  | h1 &= 0xfffffffffff; | 
|  | h2 += c; | 
|  | c = (h2 >> 42); | 
|  | h2 &= 0x3ffffffffff; | 
|  | h0 += c * 5; | 
|  |  | 
|  | g0 = h0 + 5; | 
|  | c = (g0 >> 44); | 
|  | g0 &= 0xfffffffffff; | 
|  | g1 = h1 + c; | 
|  | c = (g1 >> 44); | 
|  | g1 &= 0xfffffffffff; | 
|  | g2 = h2 + c - ((uint64_t)1 << 42); | 
|  |  | 
|  | c = (g2 >> 63) - 1; | 
|  | nc = ~c; | 
|  | h0 = (h0 & nc) | (g0 & c); | 
|  | h1 = (h1 & nc) | (g1 & c); | 
|  | h2 = (h2 & nc) | (g2 & c); | 
|  |  | 
|  | // pad | 
|  | t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; | 
|  | t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; | 
|  | h0 += (t0 & 0xfffffffffff); | 
|  | c = (h0 >> 44); | 
|  | h0 &= 0xfffffffffff; | 
|  | t0 = shr128_pair(t1, t0, 44); | 
|  | h1 += (t0 & 0xfffffffffff) + c; | 
|  | c = (h1 >> 44); | 
|  | h1 &= 0xfffffffffff; | 
|  | t1 = (t1 >> 24); | 
|  | h2 += (t1)+c; | 
|  |  | 
|  | U64TO8_LE(mac + 0, ((h0) | (h1 << 44))); | 
|  | U64TO8_LE(mac + 8, ((h1 >> 20) | (h2 << 24))); | 
|  | } | 
|  |  | 
|  | #endif  // !OPENSSL_WINDOWS && OPENSSL_X86_64 |