| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.]. */ | 
 |  | 
 | #include <openssl/cast.h> | 
 |  | 
 | #if defined(OPENSSL_WINDOWS) | 
 | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
 | #include <intrin.h> | 
 | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
 | #endif | 
 |  | 
 | #include "internal.h" | 
 | #include "../macros.h" | 
 |  | 
 |  | 
 | void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks, | 
 |                       int enc) { | 
 |   uint32_t d[2]; | 
 |  | 
 |   n2l(in, d[0]); | 
 |   n2l(in, d[1]); | 
 |   if (enc) { | 
 |     CAST_encrypt(d, ks); | 
 |   } else { | 
 |     CAST_decrypt(d, ks); | 
 |   } | 
 |   l2n(d[0], out); | 
 |   l2n(d[1], out); | 
 | } | 
 |  | 
 | #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER) | 
 | #define ROTL(a, n) (_lrotl(a, n)) | 
 | #else | 
 | #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL) | 
 | #endif | 
 |  | 
 | #define E_CAST(n, key, L, R, OP1, OP2, OP3)                                   \ | 
 |   {                                                                           \ | 
 |     uint32_t a, b, c, d;                                                      \ | 
 |     t = (key[n * 2] OP1 R) & 0xffffffff;                                      \ | 
 |     t = ROTL(t, (key[n * 2 + 1]));                                            \ | 
 |     a = CAST_S_table0[(t >> 8) & 0xff];                                       \ | 
 |     b = CAST_S_table1[(t)&0xff];                                              \ | 
 |     c = CAST_S_table2[(t >> 24) & 0xff];                                      \ | 
 |     d = CAST_S_table3[(t >> 16) & 0xff];                                      \ | 
 |     L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \ | 
 |   } | 
 |  | 
 | void CAST_encrypt(uint32_t *data, const CAST_KEY *key) { | 
 |   uint32_t l, r, t; | 
 |   const uint32_t *k; | 
 |  | 
 |   k = &key->data[0]; | 
 |   l = data[0]; | 
 |   r = data[1]; | 
 |  | 
 |   E_CAST(0, k, l, r, +, ^, -); | 
 |   E_CAST(1, k, r, l, ^, -, +); | 
 |   E_CAST(2, k, l, r, -, +, ^); | 
 |   E_CAST(3, k, r, l, +, ^, -); | 
 |   E_CAST(4, k, l, r, ^, -, +); | 
 |   E_CAST(5, k, r, l, -, +, ^); | 
 |   E_CAST(6, k, l, r, +, ^, -); | 
 |   E_CAST(7, k, r, l, ^, -, +); | 
 |   E_CAST(8, k, l, r, -, +, ^); | 
 |   E_CAST(9, k, r, l, +, ^, -); | 
 |   E_CAST(10, k, l, r, ^, -, +); | 
 |   E_CAST(11, k, r, l, -, +, ^); | 
 |  | 
 |   if (!key->short_key) { | 
 |     E_CAST(12, k, l, r, +, ^, -); | 
 |     E_CAST(13, k, r, l, ^, -, +); | 
 |     E_CAST(14, k, l, r, -, +, ^); | 
 |     E_CAST(15, k, r, l, +, ^, -); | 
 |   } | 
 |  | 
 |   data[1] = l & 0xffffffffL; | 
 |   data[0] = r & 0xffffffffL; | 
 | } | 
 |  | 
 | void CAST_decrypt(uint32_t *data, const CAST_KEY *key) { | 
 |   uint32_t l, r, t; | 
 |   const uint32_t *k; | 
 |  | 
 |   k = &key->data[0]; | 
 |   l = data[0]; | 
 |   r = data[1]; | 
 |  | 
 |   if (!key->short_key) { | 
 |     E_CAST(15, k, l, r, +, ^, -); | 
 |     E_CAST(14, k, r, l, -, +, ^); | 
 |     E_CAST(13, k, l, r, ^, -, +); | 
 |     E_CAST(12, k, r, l, +, ^, -); | 
 |   } | 
 |  | 
 |   E_CAST(11, k, l, r, -, +, ^); | 
 |   E_CAST(10, k, r, l, ^, -, +); | 
 |   E_CAST(9, k, l, r, +, ^, -); | 
 |   E_CAST(8, k, r, l, -, +, ^); | 
 |   E_CAST(7, k, l, r, ^, -, +); | 
 |   E_CAST(6, k, r, l, +, ^, -); | 
 |   E_CAST(5, k, l, r, -, +, ^); | 
 |   E_CAST(4, k, r, l, ^, -, +); | 
 |   E_CAST(3, k, l, r, +, ^, -); | 
 |   E_CAST(2, k, r, l, -, +, ^); | 
 |   E_CAST(1, k, l, r, ^, -, +); | 
 |   E_CAST(0, k, r, l, +, ^, -); | 
 |  | 
 |   data[1] = l & 0xffffffffL; | 
 |   data[0] = r & 0xffffffffL; | 
 | } | 
 |  | 
 | void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length, | 
 |                       const CAST_KEY *ks, uint8_t *iv, int enc) { | 
 |   uint32_t tin0, tin1; | 
 |   uint32_t tout0, tout1, xor0, xor1; | 
 |   long l = length; | 
 |   uint32_t tin[2]; | 
 |  | 
 |   if (enc) { | 
 |     n2l(iv, tout0); | 
 |     n2l(iv, tout1); | 
 |     iv -= 8; | 
 |     for (l -= 8; l >= 0; l -= 8) { | 
 |       n2l(in, tin0); | 
 |       n2l(in, tin1); | 
 |       tin0 ^= tout0; | 
 |       tin1 ^= tout1; | 
 |       tin[0] = tin0; | 
 |       tin[1] = tin1; | 
 |       CAST_encrypt(tin, ks); | 
 |       tout0 = tin[0]; | 
 |       tout1 = tin[1]; | 
 |       l2n(tout0, out); | 
 |       l2n(tout1, out); | 
 |     } | 
 |     if (l != -8) { | 
 |       n2ln(in, tin0, tin1, l + 8); | 
 |       tin0 ^= tout0; | 
 |       tin1 ^= tout1; | 
 |       tin[0] = tin0; | 
 |       tin[1] = tin1; | 
 |       CAST_encrypt(tin, ks); | 
 |       tout0 = tin[0]; | 
 |       tout1 = tin[1]; | 
 |       l2n(tout0, out); | 
 |       l2n(tout1, out); | 
 |     } | 
 |     l2n(tout0, iv); | 
 |     l2n(tout1, iv); | 
 |   } else { | 
 |     n2l(iv, xor0); | 
 |     n2l(iv, xor1); | 
 |     iv -= 8; | 
 |     for (l -= 8; l >= 0; l -= 8) { | 
 |       n2l(in, tin0); | 
 |       n2l(in, tin1); | 
 |       tin[0] = tin0; | 
 |       tin[1] = tin1; | 
 |       CAST_decrypt(tin, ks); | 
 |       tout0 = tin[0] ^ xor0; | 
 |       tout1 = tin[1] ^ xor1; | 
 |       l2n(tout0, out); | 
 |       l2n(tout1, out); | 
 |       xor0 = tin0; | 
 |       xor1 = tin1; | 
 |     } | 
 |     if (l != -8) { | 
 |       n2l(in, tin0); | 
 |       n2l(in, tin1); | 
 |       tin[0] = tin0; | 
 |       tin[1] = tin1; | 
 |       CAST_decrypt(tin, ks); | 
 |       tout0 = tin[0] ^ xor0; | 
 |       tout1 = tin[1] ^ xor1; | 
 |       l2nn(tout0, tout1, out, l + 8); | 
 |       xor0 = tin0; | 
 |       xor1 = tin1; | 
 |     } | 
 |     l2n(xor0, iv); | 
 |     l2n(xor1, iv); | 
 |   } | 
 |   tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; | 
 |   tin[0] = tin[1] = 0; | 
 | } | 
 |  | 
 | #define CAST_exp(l, A, a, n)   \ | 
 |   A[n / 4] = l;                \ | 
 |   a[n + 3] = (l)&0xff;         \ | 
 |   a[n + 2] = (l >> 8) & 0xff;  \ | 
 |   a[n + 1] = (l >> 16) & 0xff; \ | 
 |   a[n + 0] = (l >> 24) & 0xff; | 
 | #define S4 CAST_S_table4 | 
 | #define S5 CAST_S_table5 | 
 | #define S6 CAST_S_table6 | 
 | #define S7 CAST_S_table7 | 
 |  | 
 | void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) { | 
 |   uint32_t x[16]; | 
 |   uint32_t z[16]; | 
 |   uint32_t k[32]; | 
 |   uint32_t X[4], Z[4]; | 
 |   uint32_t l, *K; | 
 |   size_t i; | 
 |  | 
 |   for (i = 0; i < 16; i++) { | 
 |     x[i] = 0; | 
 |   } | 
 |  | 
 |   if (len > 16) { | 
 |     len = 16; | 
 |   } | 
 |  | 
 |   for (i = 0; i < len; i++) { | 
 |     x[i] = data[i]; | 
 |   } | 
 |  | 
 |   if (len <= 10) { | 
 |     key->short_key = 1; | 
 |   } else { | 
 |     key->short_key = 0; | 
 |   } | 
 |  | 
 |   K = &k[0]; | 
 |   X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; | 
 |   X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; | 
 |   X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; | 
 |   X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; | 
 |  | 
 |   for (;;) { | 
 |     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; | 
 |     CAST_exp(l, Z, z, 0); | 
 |     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; | 
 |     CAST_exp(l, Z, z, 4); | 
 |     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; | 
 |     CAST_exp(l, Z, z, 8); | 
 |     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; | 
 |     CAST_exp(l, Z, z, 12); | 
 |  | 
 |     K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; | 
 |     K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; | 
 |     K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; | 
 |     K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; | 
 |  | 
 |     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; | 
 |     CAST_exp(l, X, x, 0); | 
 |     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; | 
 |     CAST_exp(l, X, x, 4); | 
 |     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; | 
 |     CAST_exp(l, X, x, 8); | 
 |     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; | 
 |     CAST_exp(l, X, x, 12); | 
 |  | 
 |     K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; | 
 |     K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; | 
 |     K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; | 
 |     K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; | 
 |  | 
 |     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; | 
 |     CAST_exp(l, Z, z, 0); | 
 |     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; | 
 |     CAST_exp(l, Z, z, 4); | 
 |     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; | 
 |     CAST_exp(l, Z, z, 8); | 
 |     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; | 
 |     CAST_exp(l, Z, z, 12); | 
 |  | 
 |     K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; | 
 |     K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; | 
 |     K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; | 
 |     K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; | 
 |  | 
 |     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; | 
 |     CAST_exp(l, X, x, 0); | 
 |     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; | 
 |     CAST_exp(l, X, x, 4); | 
 |     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; | 
 |     CAST_exp(l, X, x, 8); | 
 |     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; | 
 |     CAST_exp(l, X, x, 12); | 
 |  | 
 |     K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; | 
 |     K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; | 
 |     K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; | 
 |     K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; | 
 |     if (K != k) { | 
 |       break; | 
 |     } | 
 |     K += 16; | 
 |   } | 
 |  | 
 |   for (i = 0; i < 16; i++) { | 
 |     key->data[i * 2] = k[i]; | 
 |     key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; | 
 |   } | 
 | } | 
 |  | 
 | /* The input and output encrypted as though 64bit cfb mode is being used. The | 
 |  * extra state information to record how much of the 64bit block we have used | 
 |  * is contained in *num. */ | 
 | void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length, | 
 |                         const CAST_KEY *schedule, uint8_t *ivec, int *num, | 
 |                         int enc) { | 
 |   uint32_t v0, v1, t; | 
 |   int n = *num; | 
 |   long l = length; | 
 |   uint32_t ti[2]; | 
 |   uint8_t *iv, c, cc; | 
 |  | 
 |   iv = ivec; | 
 |   if (enc) { | 
 |     while (l--) { | 
 |       if (n == 0) { | 
 |         n2l(iv, v0); | 
 |         ti[0] = v0; | 
 |         n2l(iv, v1); | 
 |         ti[1] = v1; | 
 |         CAST_encrypt((uint32_t *)ti, schedule); | 
 |         iv = ivec; | 
 |         t = ti[0]; | 
 |         l2n(t, iv); | 
 |         t = ti[1]; | 
 |         l2n(t, iv); | 
 |         iv = ivec; | 
 |       } | 
 |       c = *(in++) ^ iv[n]; | 
 |       *(out++) = c; | 
 |       iv[n] = c; | 
 |       n = (n + 1) & 0x07; | 
 |     } | 
 |   } else { | 
 |     while (l--) { | 
 |       if (n == 0) { | 
 |         n2l(iv, v0); | 
 |         ti[0] = v0; | 
 |         n2l(iv, v1); | 
 |         ti[1] = v1; | 
 |         CAST_encrypt((uint32_t *)ti, schedule); | 
 |         iv = ivec; | 
 |         t = ti[0]; | 
 |         l2n(t, iv); | 
 |         t = ti[1]; | 
 |         l2n(t, iv); | 
 |         iv = ivec; | 
 |       } | 
 |       cc = *(in++); | 
 |       c = iv[n]; | 
 |       iv[n] = cc; | 
 |       *(out++) = c ^ cc; | 
 |       n = (n + 1) & 0x07; | 
 |     } | 
 |   } | 
 |   v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; | 
 |   *num = n; | 
 | } |