| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 |  | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | #if !defined(BN_ULLONG) | 
 | /* bn_div_words divides a double-width |h|,|l| by |d| and returns the result, | 
 |  * which must fit in a |BN_ULONG|. */ | 
 | static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { | 
 |   BN_ULONG dh, dl, q, ret = 0, th, tl, t; | 
 |   int i, count = 2; | 
 |  | 
 |   if (d == 0) { | 
 |     return BN_MASK2; | 
 |   } | 
 |  | 
 |   i = BN_num_bits_word(d); | 
 |   assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); | 
 |  | 
 |   i = BN_BITS2 - i; | 
 |   if (h >= d) { | 
 |     h -= d; | 
 |   } | 
 |  | 
 |   if (i) { | 
 |     d <<= i; | 
 |     h = (h << i) | (l >> (BN_BITS2 - i)); | 
 |     l <<= i; | 
 |   } | 
 |   dh = (d & BN_MASK2h) >> BN_BITS4; | 
 |   dl = (d & BN_MASK2l); | 
 |   for (;;) { | 
 |     if ((h >> BN_BITS4) == dh) { | 
 |       q = BN_MASK2l; | 
 |     } else { | 
 |       q = h / dh; | 
 |     } | 
 |  | 
 |     th = q * dh; | 
 |     tl = dl * q; | 
 |     for (;;) { | 
 |       t = h - th; | 
 |       if ((t & BN_MASK2h) || | 
 |           ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) { | 
 |         break; | 
 |       } | 
 |       q--; | 
 |       th -= dh; | 
 |       tl -= dl; | 
 |     } | 
 |     t = (tl >> BN_BITS4); | 
 |     tl = (tl << BN_BITS4) & BN_MASK2h; | 
 |     th += t; | 
 |  | 
 |     if (l < tl) { | 
 |       th++; | 
 |     } | 
 |     l -= tl; | 
 |     if (h < th) { | 
 |       h += d; | 
 |       q--; | 
 |     } | 
 |     h -= th; | 
 |  | 
 |     if (--count == 0) { | 
 |       break; | 
 |     } | 
 |  | 
 |     ret = q << BN_BITS4; | 
 |     h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; | 
 |     l = (l & BN_MASK2l) << BN_BITS4; | 
 |   } | 
 |  | 
 |   ret |= q; | 
 |   return ret; | 
 | } | 
 | #endif /* !defined(BN_ULLONG) */ | 
 |  | 
 | static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out, | 
 |                                     BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) { | 
 |   /* GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when | 
 |    * the |BN_ULLONG|-based C code is used. | 
 |    * | 
 |    * GCC bugs: | 
 |    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 | 
 |    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 | 
 |    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183 | 
 |    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897 | 
 |    *   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668 | 
 |    * | 
 |    * Clang bugs: | 
 |    *   * https://llvm.org/bugs/show_bug.cgi?id=6397 | 
 |    *   * https://llvm.org/bugs/show_bug.cgi?id=12418 | 
 |    * | 
 |    * These issues aren't specific to x86 and x86_64, so it might be worthwhile | 
 |    * to add more assembly language implementations. */ | 
 | #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__) | 
 |   __asm__ volatile ( | 
 |     "divl %4" | 
 |     : "=a"(*quotient_out), "=d"(*rem_out) | 
 |     : "a"(n1), "d"(n0), "rm"(d0) | 
 |     : "cc" ); | 
 | #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__) | 
 |   __asm__ volatile ( | 
 |     "divq %4" | 
 |     : "=a"(*quotient_out), "=d"(*rem_out) | 
 |     : "a"(n1), "d"(n0), "rm"(d0) | 
 |     : "cc" ); | 
 | #else | 
 | #if defined(BN_ULLONG) | 
 |   BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1; | 
 |   *quotient_out = (BN_ULONG)(n / d0); | 
 | #else | 
 |   *quotient_out = bn_div_words(n0, n1, d0); | 
 | #endif | 
 |   *rem_out = n1 - (*quotient_out * d0); | 
 | #endif | 
 | } | 
 |  | 
 | /* BN_div computes  dv := num / divisor,  rounding towards | 
 |  * zero, and sets up rm  such that  dv*divisor + rm = num  holds. | 
 |  * Thus: | 
 |  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero) | 
 |  *     rm->neg == num->neg                 (unless the remainder is zero) | 
 |  * If 'dv' or 'rm' is NULL, the respective value is not returned. | 
 |  * | 
 |  * This was specifically designed to contain fewer branches that may leak | 
 |  * sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL | 
 |  * and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and | 
 |  * Jean-Pierre Seifert. */ | 
 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, | 
 |            BN_CTX *ctx) { | 
 |   int norm_shift, i, loop; | 
 |   BIGNUM *tmp, wnum, *snum, *sdiv, *res; | 
 |   BN_ULONG *resp, *wnump; | 
 |   BN_ULONG d0, d1; | 
 |   int num_n, div_n; | 
 |  | 
 |   /* Invalid zero-padding would have particularly bad consequences | 
 |    * so don't just rely on bn_check_top() here */ | 
 |   if ((num->top > 0 && num->d[num->top - 1] == 0) || | 
 |       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BN_is_zero(divisor)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   tmp = BN_CTX_get(ctx); | 
 |   snum = BN_CTX_get(ctx); | 
 |   sdiv = BN_CTX_get(ctx); | 
 |   if (dv == NULL) { | 
 |     res = BN_CTX_get(ctx); | 
 |   } else { | 
 |     res = dv; | 
 |   } | 
 |   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   /* First we normalise the numbers */ | 
 |   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); | 
 |   if (!(BN_lshift(sdiv, divisor, norm_shift))) { | 
 |     goto err; | 
 |   } | 
 |   sdiv->neg = 0; | 
 |   norm_shift += BN_BITS2; | 
 |   if (!(BN_lshift(snum, num, norm_shift))) { | 
 |     goto err; | 
 |   } | 
 |   snum->neg = 0; | 
 |  | 
 |   /* Since we don't want to have special-case logic for the case where snum is | 
 |    * larger than sdiv, we pad snum with enough zeroes without changing its | 
 |    * value. */ | 
 |   if (snum->top <= sdiv->top + 1) { | 
 |     if (!bn_wexpand(snum, sdiv->top + 2)) { | 
 |       goto err; | 
 |     } | 
 |     for (i = snum->top; i < sdiv->top + 2; i++) { | 
 |       snum->d[i] = 0; | 
 |     } | 
 |     snum->top = sdiv->top + 2; | 
 |   } else { | 
 |     if (!bn_wexpand(snum, snum->top + 1)) { | 
 |       goto err; | 
 |     } | 
 |     snum->d[snum->top] = 0; | 
 |     snum->top++; | 
 |   } | 
 |  | 
 |   div_n = sdiv->top; | 
 |   num_n = snum->top; | 
 |   loop = num_n - div_n; | 
 |   /* Lets setup a 'window' into snum | 
 |    * This is the part that corresponds to the current | 
 |    * 'area' being divided */ | 
 |   wnum.neg = 0; | 
 |   wnum.d = &(snum->d[loop]); | 
 |   wnum.top = div_n; | 
 |   /* only needed when BN_ucmp messes up the values between top and max */ | 
 |   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | 
 |  | 
 |   /* Get the top 2 words of sdiv */ | 
 |   /* div_n=sdiv->top; */ | 
 |   d0 = sdiv->d[div_n - 1]; | 
 |   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | 
 |  | 
 |   /* pointer to the 'top' of snum */ | 
 |   wnump = &(snum->d[num_n - 1]); | 
 |  | 
 |   /* Setup to 'res' */ | 
 |   res->neg = (num->neg ^ divisor->neg); | 
 |   if (!bn_wexpand(res, (loop + 1))) { | 
 |     goto err; | 
 |   } | 
 |   res->top = loop - 1; | 
 |   resp = &(res->d[loop - 1]); | 
 |  | 
 |   /* space for temp */ | 
 |   if (!bn_wexpand(tmp, (div_n + 1))) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   /* if res->top == 0 then clear the neg value otherwise decrease | 
 |    * the resp pointer */ | 
 |   if (res->top == 0) { | 
 |     res->neg = 0; | 
 |   } else { | 
 |     resp--; | 
 |   } | 
 |  | 
 |   for (i = 0; i < loop - 1; i++, wnump--, resp--) { | 
 |     BN_ULONG q, l0; | 
 |     /* the first part of the loop uses the top two words of snum and sdiv to | 
 |      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */ | 
 |     BN_ULONG n0, n1, rem = 0; | 
 |  | 
 |     n0 = wnump[0]; | 
 |     n1 = wnump[-1]; | 
 |     if (n0 == d0) { | 
 |       q = BN_MASK2; | 
 |     } else { | 
 |       /* n0 < d0 */ | 
 |       bn_div_rem_words(&q, &rem, n0, n1, d0); | 
 |  | 
 | #ifdef BN_ULLONG | 
 |       BN_ULLONG t2 = (BN_ULLONG)d1 * q; | 
 |       for (;;) { | 
 |         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) { | 
 |           break; | 
 |         } | 
 |         q--; | 
 |         rem += d0; | 
 |         if (rem < d0) { | 
 |           break; /* don't let rem overflow */ | 
 |         } | 
 |         t2 -= d1; | 
 |       } | 
 | #else /* !BN_ULLONG */ | 
 |       BN_ULONG t2l, t2h; | 
 |       BN_UMULT_LOHI(t2l, t2h, d1, q); | 
 |       for (;;) { | 
 |         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) { | 
 |           break; | 
 |         } | 
 |         q--; | 
 |         rem += d0; | 
 |         if (rem < d0) { | 
 |           break; /* don't let rem overflow */ | 
 |         } | 
 |         if (t2l < d1) { | 
 |           t2h--; | 
 |         } | 
 |         t2l -= d1; | 
 |       } | 
 | #endif /* !BN_ULLONG */ | 
 |     } | 
 |  | 
 |     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | 
 |     tmp->d[div_n] = l0; | 
 |     wnum.d--; | 
 |     /* ingore top values of the bignums just sub the two | 
 |      * BN_ULONG arrays with bn_sub_words */ | 
 |     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { | 
 |       /* Note: As we have considered only the leading | 
 |        * two BN_ULONGs in the calculation of q, sdiv * q | 
 |        * might be greater than wnum (but then (q-1) * sdiv | 
 |        * is less or equal than wnum) | 
 |        */ | 
 |       q--; | 
 |       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { | 
 |         /* we can't have an overflow here (assuming | 
 |          * that q != 0, but if q == 0 then tmp is | 
 |          * zero anyway) */ | 
 |         (*wnump)++; | 
 |       } | 
 |     } | 
 |     /* store part of the result */ | 
 |     *resp = q; | 
 |   } | 
 |   bn_correct_top(snum); | 
 |   if (rm != NULL) { | 
 |     /* Keep a copy of the neg flag in num because if rm==num | 
 |      * BN_rshift() will overwrite it. | 
 |      */ | 
 |     int neg = num->neg; | 
 |     if (!BN_rshift(rm, snum, norm_shift)) { | 
 |       goto err; | 
 |     } | 
 |     if (!BN_is_zero(rm)) { | 
 |       rm->neg = neg; | 
 |     } | 
 |   } | 
 |   bn_correct_top(res); | 
 |   BN_CTX_end(ctx); | 
 |   return 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return 0; | 
 | } | 
 |  | 
 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { | 
 |   if (!(BN_mod(r, m, d, ctx))) { | 
 |     return 0; | 
 |   } | 
 |   if (!r->neg) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   /* now -|d| < r < 0, so we have to set r := r + |d|. */ | 
 |   return (d->neg ? BN_sub : BN_add)(r, r, d); | 
 | } | 
 |  | 
 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   if (!BN_add(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m) { | 
 |   if (!BN_uadd(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_ucmp(r, m) >= 0) { | 
 |     return BN_usub(r, r, m); | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   if (!BN_sub(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative | 
 |  * and less than  m */ | 
 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m) { | 
 |   if (!BN_sub(r, a, b)) { | 
 |     return 0; | 
 |   } | 
 |   if (r->neg) { | 
 |     return BN_add(r, r, m); | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx) { | 
 |   BIGNUM *t; | 
 |   int ret = 0; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   t = BN_CTX_get(ctx); | 
 |   if (t == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (a == b) { | 
 |     if (!BN_sqr(t, a, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } else { | 
 |     if (!BN_mul(t, a, b, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!BN_nnmod(r, t, m, ctx)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
 |   if (!BN_sqr(r, a, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* r->neg == 0,  thus we don't need BN_nnmod */ | 
 |   return BN_mod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
 |                   BN_CTX *ctx) { | 
 |   BIGNUM *abs_m = NULL; | 
 |   int ret; | 
 |  | 
 |   if (!BN_nnmod(r, a, m, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (m->neg) { | 
 |     abs_m = BN_dup(m); | 
 |     if (abs_m == NULL) { | 
 |       return 0; | 
 |     } | 
 |     abs_m->neg = 0; | 
 |   } | 
 |  | 
 |   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); | 
 |  | 
 |   BN_free(abs_m); | 
 |   return ret; | 
 | } | 
 |  | 
 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { | 
 |   if (r != a) { | 
 |     if (BN_copy(r, a) == NULL) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   while (n > 0) { | 
 |     int max_shift; | 
 |  | 
 |     /* 0 < r < m */ | 
 |     max_shift = BN_num_bits(m) - BN_num_bits(r); | 
 |     /* max_shift >= 0 */ | 
 |  | 
 |     if (max_shift < 0) { | 
 |       OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (max_shift > n) { | 
 |       max_shift = n; | 
 |     } | 
 |  | 
 |     if (max_shift) { | 
 |       if (!BN_lshift(r, r, max_shift)) { | 
 |         return 0; | 
 |       } | 
 |       n -= max_shift; | 
 |     } else { | 
 |       if (!BN_lshift1(r, r)) { | 
 |         return 0; | 
 |       } | 
 |       --n; | 
 |     } | 
 |  | 
 |     /* BN_num_bits(r) <= BN_num_bits(m) */ | 
 |     if (BN_cmp(r, m) >= 0) { | 
 |       if (!BN_sub(r, r, m)) { | 
 |         return 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { | 
 |   if (!BN_lshift1(r, a)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return BN_nnmod(r, r, m, ctx); | 
 | } | 
 |  | 
 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { | 
 |   if (!BN_lshift1(r, a)) { | 
 |     return 0; | 
 |   } | 
 |   if (BN_cmp(r, m) >= 0) { | 
 |     return BN_sub(r, r, m); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { | 
 |   BN_ULONG ret = 0; | 
 |   int i, j; | 
 |  | 
 |   w &= BN_MASK2; | 
 |  | 
 |   if (!w) { | 
 |     /* actually this an error (division by zero) */ | 
 |     return (BN_ULONG) - 1; | 
 |   } | 
 |  | 
 |   if (a->top == 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* normalize input for |bn_div_rem_words|. */ | 
 |   j = BN_BITS2 - BN_num_bits_word(w); | 
 |   w <<= j; | 
 |   if (!BN_lshift(a, a, j)) { | 
 |     return (BN_ULONG) - 1; | 
 |   } | 
 |  | 
 |   for (i = a->top - 1; i >= 0; i--) { | 
 |     BN_ULONG l = a->d[i]; | 
 |     BN_ULONG d; | 
 |     BN_ULONG unused_rem; | 
 |     bn_div_rem_words(&d, &unused_rem, ret, l, w); | 
 |     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2; | 
 |     a->d[i] = d; | 
 |   } | 
 |  | 
 |   if ((a->top > 0) && (a->d[a->top - 1] == 0)) { | 
 |     a->top--; | 
 |   } | 
 |  | 
 |   if (a->top == 0) { | 
 |     a->neg = 0; | 
 |   } | 
 |  | 
 |   ret >>= j; | 
 |   return ret; | 
 | } | 
 |  | 
 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { | 
 | #ifndef BN_ULLONG | 
 |   BN_ULONG ret = 0; | 
 | #else | 
 |   BN_ULLONG ret = 0; | 
 | #endif | 
 |   int i; | 
 |  | 
 |   if (w == 0) { | 
 |     return (BN_ULONG) -1; | 
 |   } | 
 |  | 
 | #ifndef BN_ULLONG | 
 |   /* If |w| is too long and we don't have |BN_ULLONG| then we need to fall back | 
 |    * to using |BN_div_word|. */ | 
 |   if (w > ((BN_ULONG)1 << BN_BITS4)) { | 
 |     BIGNUM *tmp = BN_dup(a); | 
 |     if (tmp == NULL) { | 
 |       return (BN_ULONG)-1; | 
 |     } | 
 |     ret = BN_div_word(tmp, w); | 
 |     BN_free(tmp); | 
 |     return ret; | 
 |   } | 
 | #endif | 
 |  | 
 |   w &= BN_MASK2; | 
 |   for (i = a->top - 1; i >= 0; i--) { | 
 | #ifndef BN_ULLONG | 
 |     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; | 
 |     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; | 
 | #else | 
 |     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w); | 
 | #endif | 
 |   } | 
 |   return (BN_ULONG)ret; | 
 | } | 
 |  | 
 | int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { | 
 |   if (e == 0 || a->top == 0) { | 
 |     BN_zero(r); | 
 |     return 1; | 
 |   } | 
 |  | 
 |   size_t num_words = 1 + ((e - 1) / BN_BITS2); | 
 |  | 
 |   /* If |a| definitely has less than |e| bits, just BN_copy. */ | 
 |   if ((size_t) a->top < num_words) { | 
 |     return BN_copy(r, a) != NULL; | 
 |   } | 
 |  | 
 |   /* Otherwise, first make sure we have enough space in |r|. | 
 |    * Note that this will fail if num_words > INT_MAX. */ | 
 |   if (!bn_wexpand(r, num_words)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Copy the content of |a| into |r|. */ | 
 |   OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG)); | 
 |  | 
 |   /* If |e| isn't word-aligned, we have to mask off some of our bits. */ | 
 |   size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8); | 
 |   if (top_word_exponent != 0) { | 
 |     r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; | 
 |   } | 
 |  | 
 |   /* Fill in the remaining fields of |r|. */ | 
 |   r->neg = a->neg; | 
 |   r->top = (int) num_words; | 
 |   bn_correct_top(r); | 
 |   return 1; | 
 | } | 
 |  | 
 | int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { | 
 |   if (!BN_mod_pow2(r, a, e)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* If the returned value was non-negative, we're done. */ | 
 |   if (BN_is_zero(r) || !r->neg) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   size_t num_words = 1 + (e - 1) / BN_BITS2; | 
 |  | 
 |   /* Expand |r| to the size of our modulus. */ | 
 |   if (!bn_wexpand(r, num_words)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Clear the upper words of |r|. */ | 
 |   OPENSSL_memset(&r->d[r->top], 0, (num_words - r->top) * BN_BYTES); | 
 |  | 
 |   /* Set parameters of |r|. */ | 
 |   r->neg = 0; | 
 |   r->top = (int) num_words; | 
 |  | 
 |   /* Now, invert every word. The idea here is that we want to compute 2^e-|x|, | 
 |    * which is actually equivalent to the twos-complement representation of |x| | 
 |    * in |e| bits, which is -x = ~x + 1. */ | 
 |   for (int i = 0; i < r->top; i++) { | 
 |     r->d[i] = ~r->d[i]; | 
 |   } | 
 |  | 
 |   /* If our exponent doesn't span the top word, we have to mask the rest. */ | 
 |   size_t top_word_exponent = e % BN_BITS2; | 
 |   if (top_word_exponent != 0) { | 
 |     r->d[r->top - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; | 
 |   } | 
 |  | 
 |   /* Keep the correct_top invariant for BN_add. */ | 
 |   bn_correct_top(r); | 
 |  | 
 |   /* Finally, add one, for the reason described above. */ | 
 |   return BN_add(r, r, BN_value_one()); | 
 | } |