| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 1999. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| #include "../bytestring/internal.h" |
| |
| |
| #define PKCS12_KEY_ID 1 |
| #define PKCS12_IV_ID 2 |
| #define PKCS12_MAC_ID 3 |
| |
| static int ascii_to_ucs2(const char *ascii, size_t ascii_len, |
| uint8_t **out, size_t *out_len) { |
| size_t ulen = ascii_len * 2 + 2; |
| if (ascii_len * 2 < ascii_len || ulen < ascii_len * 2) { |
| return 0; |
| } |
| |
| uint8_t *unitmp = OPENSSL_malloc(ulen); |
| if (unitmp == NULL) { |
| return 0; |
| } |
| for (size_t i = 0; i < ulen - 2; i += 2) { |
| unitmp[i] = 0; |
| unitmp[i + 1] = ascii[i >> 1]; |
| } |
| |
| /* Terminate the result with a UCS-2 NUL. */ |
| unitmp[ulen - 2] = 0; |
| unitmp[ulen - 1] = 0; |
| *out_len = ulen; |
| *out = unitmp; |
| return 1; |
| } |
| |
| static int pkcs12_key_gen_raw(const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *salt, size_t salt_len, |
| uint8_t id, unsigned iterations, |
| size_t out_len, uint8_t *out, |
| const EVP_MD *md) { |
| /* See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the |
| * specification have errata applied and other typos fixed. */ |
| |
| if (iterations < 1) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
| return 0; |
| } |
| |
| /* In the spec, |block_size| is called "v", but measured in bits. */ |
| size_t block_size = EVP_MD_block_size(md); |
| |
| /* 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies |
| * of ID. */ |
| uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; |
| OPENSSL_memset(D, id, block_size); |
| |
| /* 2. Concatenate copies of the salt together to create a string S of length |
| * v(ceiling(s/v)) bits (the final copy of the salt may be truncated to |
| * create S). Note that if the salt is the empty string, then so is S. |
| * |
| * 3. Concatenate copies of the password together to create a string P of |
| * length v(ceiling(p/v)) bits (the final copy of the password may be |
| * truncated to create P). Note that if the password is the empty string, |
| * then so is P. |
| * |
| * 4. Set I=S||P to be the concatenation of S and P. */ |
| if (salt_len + block_size - 1 < salt_len || |
| pass_raw_len + block_size - 1 < pass_raw_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| return 0; |
| } |
| size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); |
| size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); |
| size_t I_len = S_len + P_len; |
| if (I_len < S_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| uint8_t *I = OPENSSL_malloc(I_len); |
| if (I_len != 0 && I == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| for (size_t i = 0; i < S_len; i++) { |
| I[i] = salt[i % salt_len]; |
| } |
| for (size_t i = 0; i < P_len; i++) { |
| I[i + S_len] = pass_raw[i % pass_raw_len]; |
| } |
| |
| int ret = 0; |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| |
| while (out_len != 0) { |
| /* A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, |
| * H(H(H(... H(D||I)))) */ |
| uint8_t A[EVP_MAX_MD_SIZE]; |
| unsigned A_len; |
| if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
| !EVP_DigestUpdate(&ctx, D, block_size) || |
| !EVP_DigestUpdate(&ctx, I, I_len) || |
| !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
| goto err; |
| } |
| for (unsigned iter = 1; iter < iterations; iter++) { |
| if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
| !EVP_DigestUpdate(&ctx, A, A_len) || |
| !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
| goto err; |
| } |
| } |
| |
| size_t todo = out_len < A_len ? out_len : A_len; |
| OPENSSL_memcpy(out, A, todo); |
| out += todo; |
| out_len -= todo; |
| if (out_len == 0) { |
| break; |
| } |
| |
| /* B. Concatenate copies of A_i to create a string B of length v bits (the |
| * final copy of A_i may be truncated to create B). */ |
| uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; |
| for (size_t i = 0; i < block_size; i++) { |
| B[i] = A[i % A_len]; |
| } |
| |
| /* C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks, |
| * where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod |
| * 2^v for each j. */ |
| assert(I_len % block_size == 0); |
| for (size_t i = 0; i < I_len; i += block_size) { |
| unsigned carry = 1; |
| for (size_t j = block_size - 1; j < block_size; j--) { |
| carry += I[i + j] + B[j]; |
| I[i + j] = (uint8_t)carry; |
| carry >>= 8; |
| } |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_cleanse(I, I_len); |
| OPENSSL_free(I); |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, |
| EVP_CIPHER_CTX *ctx, unsigned iterations, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *salt, size_t salt_len, |
| int is_encrypt) { |
| const EVP_CIPHER *cipher = suite->cipher_func(); |
| const EVP_MD *md = suite->md_func(); |
| |
| uint8_t key[EVP_MAX_KEY_LENGTH]; |
| if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, |
| salt_len, PKCS12_KEY_ID, iterations, |
| EVP_CIPHER_key_length(cipher), key, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
| return 0; |
| } |
| |
| uint8_t iv[EVP_MAX_IV_LENGTH]; |
| if (!pkcs12_key_gen_raw(pass_raw, pass_raw_len, salt, |
| salt_len, PKCS12_IV_ID, iterations, |
| EVP_CIPHER_iv_length(cipher), iv, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
| return 0; |
| } |
| |
| int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
| OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
| return ret; |
| } |
| |
| static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, |
| EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw, |
| size_t pass_raw_len, CBS *param) { |
| CBS pbe_param, salt; |
| uint64_t iterations; |
| if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1_uint64(&pbe_param, &iterations) || |
| CBS_len(&pbe_param) != 0 || |
| CBS_len(param) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (iterations == 0 || iterations > UINT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
| return 0; |
| } |
| |
| return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass_raw, |
| pass_raw_len, CBS_data(&salt), CBS_len(&salt), |
| 0 /* decrypt */); |
| } |
| |
| static const struct pbe_suite kBuiltinPBE[] = { |
| { |
| NID_pbe_WithSHA1And40BitRC2_CBC, EVP_rc2_40_cbc, EVP_sha1, |
| pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD, |
| }, |
| { |
| NID_pbe_WithSHA1And128BitRC4, EVP_rc4, EVP_sha1, |
| pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD, |
| }, |
| { |
| NID_pbe_WithSHA1And3_Key_TripleDES_CBC, EVP_des_ede3_cbc, EVP_sha1, |
| pkcs12_pbe_decrypt_init, PBE_UCS2_CONVERT_PASSWORD, |
| }, |
| { |
| NID_pbes2, NULL, NULL, PKCS5_pbe2_decrypt_init, 0, |
| }, |
| }; |
| |
| static const struct pbe_suite *get_pbe_suite(int pbe_nid) { |
| unsigned i; |
| for (i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
| if (kBuiltinPBE[i].pbe_nid == pbe_nid) { |
| return &kBuiltinPBE[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* pass_to_pass_raw performs a password conversion (possibly a no-op) |
| * appropriate to the supplied |pbe_nid|. The input |pass| is treated as a |
| * NUL-terminated string if |pass_len| is -1, otherwise it is treated as a |
| * buffer of the specified length. If the supplied PBE NID sets the |
| * |PBE_UCS2_CONVERT_PASSWORD| flag, the supplied |pass| will be converted to |
| * UCS-2. |
| * |
| * It sets |*out_pass_raw| to a new buffer that must be freed by the caller. It |
| * returns one on success and zero on error. */ |
| static int pass_to_pass_raw(int pbe_nid, const char *pass, int pass_len, |
| uint8_t **out_pass_raw, size_t *out_pass_raw_len) { |
| if (pass == NULL) { |
| *out_pass_raw = NULL; |
| *out_pass_raw_len = 0; |
| return 1; |
| } |
| |
| if (pass_len == -1) { |
| pass_len = strlen(pass); |
| } else if (pass_len < 0 || pass_len > 2000000000) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const struct pbe_suite *suite = get_pbe_suite(pbe_nid); |
| if (suite != NULL && (suite->flags & PBE_UCS2_CONVERT_PASSWORD)) { |
| if (!ascii_to_ucs2(pass, pass_len, out_pass_raw, out_pass_raw_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| } else { |
| *out_pass_raw = BUF_memdup(pass, pass_len); |
| if (*out_pass_raw == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| *out_pass_raw_len = (size_t)pass_len; |
| } |
| |
| return 1; |
| } |
| |
| static int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg, |
| unsigned iterations, const uint8_t *pass_raw, |
| size_t pass_raw_len, const uint8_t *salt, |
| size_t salt_len) { |
| const struct pbe_suite *suite = get_pbe_suite(alg); |
| if (suite == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
| return 0; |
| } |
| |
| /* See RFC 2898, appendix A.3. */ |
| CBB algorithm, param, salt_cbb; |
| if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
| !OBJ_nid2cbb(&algorithm, alg) || |
| !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(¶m, &salt_cbb, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_bytes(&salt_cbb, salt, salt_len) || |
| !CBB_add_asn1_uint64(¶m, iterations) || |
| !CBB_flush(out)) { |
| return 0; |
| } |
| |
| return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass_raw, pass_raw_len, |
| salt, salt_len, 1 /* encrypt */); |
| } |
| |
| static int pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *in, size_t in_len) { |
| int ret = 0; |
| uint8_t *buf = NULL;; |
| EVP_CIPHER_CTX ctx; |
| EVP_CIPHER_CTX_init(&ctx); |
| |
| CBS obj; |
| if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| const struct pbe_suite *suite = get_pbe_suite(OBJ_cbs2nid(&obj)); |
| if (suite == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
| goto err; |
| } |
| |
| if (!suite->decrypt_init(suite, &ctx, pass_raw, pass_raw_len, algorithm)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); |
| goto err; |
| } |
| |
| buf = OPENSSL_malloc(in_len); |
| if (buf == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (in_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| int n1, n2; |
| if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) || |
| !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) { |
| goto err; |
| } |
| |
| *out = buf; |
| *out_len = n1 + n2; |
| ret = 1; |
| buf = NULL; |
| |
| err: |
| OPENSSL_free(buf); |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static PKCS8_PRIV_KEY_INFO *pkcs8_decrypt_raw(X509_SIG *pkcs8, |
| const uint8_t *pass_raw, |
| size_t pass_raw_len) { |
| PKCS8_PRIV_KEY_INFO *ret = NULL; |
| uint8_t *in = NULL, *out = NULL; |
| size_t out_len = 0; |
| |
| /* Convert the legacy ASN.1 object to a byte string. */ |
| int in_len = i2d_X509_SIG(pkcs8, &in); |
| if (in_len < 0) { |
| goto err; |
| } |
| |
| /* See RFC 5208, section 6. */ |
| CBS cbs, epki, algorithm, ciphertext; |
| CBS_init(&cbs, in, in_len); |
| if (!CBS_get_asn1(&cbs, &epki, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
| CBS_len(&epki) != 0 || |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| if (!pbe_decrypt(&out, &out_len, &algorithm, pass_raw, pass_raw_len, |
| CBS_data(&ciphertext), CBS_len(&ciphertext))) { |
| goto err; |
| } |
| |
| if (out_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| /* Convert back to legacy ASN.1 objects. */ |
| const uint8_t *ptr = out; |
| ret = d2i_PKCS8_PRIV_KEY_INFO(NULL, &ptr, (long)out_len); |
| OPENSSL_cleanse(out, out_len); |
| if (ret == NULL || ptr != out + out_len) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| PKCS8_PRIV_KEY_INFO_free(ret); |
| ret = NULL; |
| } |
| |
| err: |
| OPENSSL_free(in); |
| OPENSSL_cleanse(out, out_len); |
| OPENSSL_free(out); |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| int pass_len) { |
| uint8_t *pass_raw = NULL; |
| size_t pass_raw_len = 0; |
| if (!pass_to_pass_raw(OBJ_obj2nid(pkcs8->algor->algorithm), pass, pass_len, |
| &pass_raw, &pass_raw_len)) { |
| return NULL; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *ret = pkcs8_decrypt_raw(pkcs8, pass_raw, pass_raw_len); |
| |
| if (pass_raw) { |
| OPENSSL_cleanse(pass_raw, pass_raw_len); |
| OPENSSL_free(pass_raw); |
| } |
| return ret; |
| } |
| |
| static X509_SIG *pkcs8_encrypt_raw(int pbe_nid, const EVP_CIPHER *cipher, |
| const uint8_t *pass_raw, size_t pass_raw_len, |
| const uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| X509_SIG *ret = NULL; |
| uint8_t *plaintext = NULL, *salt_buf = NULL, *der = NULL; |
| int plaintext_len = -1; |
| size_t der_len; |
| CBB cbb; |
| CBB_zero(&cbb); |
| EVP_CIPHER_CTX ctx; |
| EVP_CIPHER_CTX_init(&ctx); |
| |
| /* Generate a random salt if necessary. */ |
| if (salt == NULL) { |
| if (salt_len == 0) { |
| salt_len = PKCS5_SALT_LEN; |
| } |
| |
| salt_buf = OPENSSL_malloc(salt_len); |
| if (salt_buf == NULL || |
| !RAND_bytes(salt_buf, salt_len)) { |
| goto err; |
| } |
| |
| salt = salt_buf; |
| } |
| |
| if (iterations <= 0) { |
| iterations = PKCS5_DEFAULT_ITERATIONS; |
| } |
| |
| /* Convert the input from the legacy ASN.1 format. */ |
| plaintext_len = i2d_PKCS8_PRIV_KEY_INFO(p8inf, &plaintext); |
| if (plaintext_len < 0) { |
| goto err; |
| } |
| |
| CBB epki; |
| if (!CBB_init(&cbb, 128) || |
| !CBB_add_asn1(&cbb, &epki, CBS_ASN1_SEQUENCE)) { |
| goto err; |
| } |
| |
| int alg_ok; |
| if (pbe_nid == -1) { |
| alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations, |
| pass_raw, pass_raw_len, salt, salt_len); |
| } else { |
| alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations, |
| pass_raw, pass_raw_len, salt, salt_len); |
| } |
| if (!alg_ok) { |
| goto err; |
| } |
| |
| size_t max_out = (size_t)plaintext_len + EVP_CIPHER_CTX_block_size(&ctx); |
| if (max_out < (size_t)plaintext_len) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
| goto err; |
| } |
| |
| CBB ciphertext; |
| uint8_t *out; |
| int n1, n2; |
| if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
| !CBB_reserve(&ciphertext, &out, max_out) || |
| !EVP_CipherUpdate(&ctx, out, &n1, plaintext, plaintext_len) || |
| !EVP_CipherFinal_ex(&ctx, out + n1, &n2) || |
| !CBB_did_write(&ciphertext, n1 + n2) || |
| !CBB_finish(&cbb, &der, &der_len)) { |
| goto err; |
| } |
| |
| /* Convert back to legacy ASN.1 objects. */ |
| const uint8_t *ptr = der; |
| ret = d2i_X509_SIG(NULL, &ptr, der_len); |
| if (ret == NULL || ptr != der + der_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); |
| X509_SIG_free(ret); |
| ret = NULL; |
| } |
| |
| err: |
| if (plaintext_len > 0) { |
| OPENSSL_cleanse(plaintext, plaintext_len); |
| } |
| OPENSSL_free(plaintext); |
| OPENSSL_free(salt_buf); |
| OPENSSL_free(der); |
| CBB_cleanup(&cbb); |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| int pass_len, const uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| uint8_t *pass_raw = NULL; |
| size_t pass_raw_len = 0; |
| if (!pass_to_pass_raw(pbe_nid, pass, pass_len, &pass_raw, &pass_raw_len)) { |
| return NULL; |
| } |
| |
| X509_SIG *ret = pkcs8_encrypt_raw(pbe_nid, cipher, pass_raw, pass_raw_len, |
| salt, salt_len, iterations, p8inf); |
| |
| if (pass_raw) { |
| OPENSSL_cleanse(pass_raw, pass_raw_len); |
| OPENSSL_free(pass_raw); |
| } |
| return ret; |
| } |
| |
| EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| uint8_t *der = NULL; |
| int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); |
| if (der_len < 0) { |
| return NULL; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, der, (size_t)der_len); |
| EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
| if (ret == NULL || CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| EVP_PKEY_free(ret); |
| OPENSSL_free(der); |
| return NULL; |
| } |
| |
| OPENSSL_free(der); |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| CBB cbb; |
| uint8_t *der = NULL; |
| size_t der_len; |
| if (!CBB_init(&cbb, 0) || |
| !EVP_marshal_private_key(&cbb, pkey) || |
| !CBB_finish(&cbb, &der, &der_len) || |
| der_len > LONG_MAX) { |
| CBB_cleanup(&cbb); |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); |
| goto err; |
| } |
| |
| const uint8_t *p = der; |
| PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); |
| if (p8 == NULL || p != der + der_len) { |
| PKCS8_PRIV_KEY_INFO_free(p8); |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| OPENSSL_free(der); |
| return p8; |
| |
| err: |
| OPENSSL_free(der); |
| return NULL; |
| } |
| |
| struct pkcs12_context { |
| EVP_PKEY **out_key; |
| STACK_OF(X509) *out_certs; |
| uint8_t *password; |
| size_t password_len; |
| }; |
| |
| /* PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 |
| * structure. */ |
| static int PKCS12_handle_sequence( |
| CBS *sequence, struct pkcs12_context *ctx, |
| int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { |
| uint8_t *der_bytes = NULL; |
| size_t der_len; |
| CBS in; |
| int ret = 0; |
| |
| /* Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
| * the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
| * conversion cannot see through those wrappings. So each time we step |
| * through one we need to convert to DER again. */ |
| if (!CBS_asn1_ber_to_der(sequence, &der_bytes, &der_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| if (der_bytes != NULL) { |
| CBS_init(&in, der_bytes, der_len); |
| } else { |
| CBS_init(&in, CBS_data(sequence), CBS_len(sequence)); |
| } |
| |
| CBS child; |
| if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || |
| CBS_len(&in) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| while (CBS_len(&child) > 0) { |
| CBS element; |
| if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!handle_element(&element, ctx)) { |
| goto err; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(der_bytes); |
| return ret; |
| } |
| |
| /* PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 |
| * structure. */ |
| static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { |
| CBS bag_id, wrapped_value; |
| if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(safe_bag, &wrapped_value, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) |
| /* Ignore the bagAttributes field. */) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| int nid = OBJ_cbs2nid(&bag_id); |
| if (nid == NID_pkcs8ShroudedKeyBag) { |
| /* See RFC 7292, section 4.2.2. */ |
| if (*ctx->out_key) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
| return 0; |
| } |
| |
| if (CBS_len(&wrapped_value) > LONG_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| /* |encrypted| isn't actually an X.509 signature, but it has the same |
| * structure as one and so |X509_SIG| is reused to store it. */ |
| const uint8_t *inp = CBS_data(&wrapped_value); |
| X509_SIG *encrypted = |
| d2i_X509_SIG(NULL, &inp, (long)CBS_len(&wrapped_value)); |
| if (encrypted == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| if (inp != CBS_data(&wrapped_value) + CBS_len(&wrapped_value)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| X509_SIG_free(encrypted); |
| return 0; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *pki = |
| pkcs8_decrypt_raw(encrypted, ctx->password, ctx->password_len); |
| X509_SIG_free(encrypted); |
| if (pki == NULL) { |
| return 0; |
| } |
| |
| *ctx->out_key = EVP_PKCS82PKEY(pki); |
| PKCS8_PRIV_KEY_INFO_free(pki); |
| return ctx->out_key != NULL; |
| } |
| |
| if (nid == NID_certBag) { |
| /* See RFC 7292, section 4.2.3. */ |
| CBS cert_bag, cert_type, wrapped_cert, cert; |
| if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&cert_bag, &wrapped_cert, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| if (OBJ_cbs2nid(&cert_type) != NID_x509Certificate) { |
| return 1; |
| } |
| |
| if (CBS_len(&cert) > LONG_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| const uint8_t *inp = CBS_data(&cert); |
| X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); |
| if (!x509) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| if (inp != CBS_data(&cert) + CBS_len(&cert)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| X509_free(x509); |
| return 0; |
| } |
| |
| if (0 == sk_X509_push(ctx->out_certs, x509)) { |
| X509_free(x509); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Unknown element type - ignore it. */ |
| return 1; |
| } |
| |
| /* PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
| * PKCS#12 structure. */ |
| static int PKCS12_handle_content_info(CBS *content_info, |
| struct pkcs12_context *ctx) { |
| CBS content_type, wrapped_contents, contents; |
| int nid, ret = 0; |
| uint8_t *storage = NULL; |
| |
| if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(content_info, &wrapped_contents, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| CBS_len(content_info) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| nid = OBJ_cbs2nid(&content_type); |
| if (nid == NID_pkcs7_encrypted) { |
| /* See https://tools.ietf.org/html/rfc2315#section-13. |
| * |
| * PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
| * encrypted certificate bag and it's generally encrypted with 40-bit |
| * RC2-CBC. */ |
| CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
| uint8_t *out; |
| size_t out_len; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || |
| /* EncryptedContentInfo, see |
| * https://tools.ietf.org/html/rfc2315#section-10.1 */ |
| !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || |
| /* AlgorithmIdentifier, see |
| * https://tools.ietf.org/html/rfc5280#section-4.1.1.2 */ |
| !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_implicit_string( |
| &eci, &encrypted_contents, &storage, |
| CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (OBJ_cbs2nid(&contents_type) != NID_pkcs7_data) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!pbe_decrypt(&out, &out_len, &ai, ctx->password, ctx->password_len, |
| CBS_data(&encrypted_contents), |
| CBS_len(&encrypted_contents))) { |
| goto err; |
| } |
| |
| CBS safe_contents; |
| CBS_init(&safe_contents, out, out_len); |
| ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); |
| OPENSSL_free(out); |
| } else if (nid == NID_pkcs7_data) { |
| CBS octet_string_contents; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, |
| CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ret = PKCS12_handle_sequence(&octet_string_contents, ctx, |
| PKCS12_handle_safe_bag); |
| } else { |
| /* Unknown element type - ignore it. */ |
| ret = 1; |
| } |
| |
| err: |
| OPENSSL_free(storage); |
| return ret; |
| } |
| |
| int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
| CBS *ber_in, const char *password) { |
| uint8_t *der_bytes = NULL; |
| size_t der_len; |
| CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
| uint64_t version; |
| int ret = 0; |
| struct pkcs12_context ctx; |
| const size_t original_out_certs_len = sk_X509_num(out_certs); |
| |
| /* The input may be in BER format. */ |
| if (!CBS_asn1_ber_to_der(ber_in, &der_bytes, &der_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| if (der_bytes != NULL) { |
| CBS_init(&in, der_bytes, der_len); |
| } else { |
| CBS_init(&in, CBS_data(ber_in), CBS_len(ber_in)); |
| } |
| |
| *out_key = NULL; |
| OPENSSL_memset(&ctx, 0, sizeof(ctx)); |
| |
| /* See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| * four. */ |
| if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || |
| CBS_len(&in) != 0 || |
| !CBS_get_asn1_uint64(&pfx, &version)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (version < 3) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (CBS_len(&pfx) == 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* authsafe is a PKCS#7 ContentInfo. See |
| * https://tools.ietf.org/html/rfc2315#section-7. */ |
| if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&authsafe, &wrapped_authsafes, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* The content type can either be |NID_pkcs7_data| or |NID_pkcs7_signed|. The |
| * latter indicates that it's signed by a public key, which isn't |
| * supported. */ |
| if (OBJ_cbs2nid(&content_type) != NID_pkcs7_data) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ctx.out_key = out_key; |
| ctx.out_certs = out_certs; |
| if (!ascii_to_ucs2(password, password ? strlen(password) : 0, &ctx.password, |
| &ctx.password_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| /* Verify the MAC. */ |
| { |
| CBS mac, hash_type_seq, hash_oid, salt, expected_mac; |
| uint64_t iterations; |
| int hash_nid; |
| const EVP_MD *md; |
| uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
| uint8_t hmac[EVP_MAX_MD_SIZE]; |
| unsigned hmac_len; |
| |
| if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&mac, &hash_type_seq, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&hash_type_seq, &hash_oid, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| /* The iteration count is optional and the default is one. */ |
| iterations = 1; |
| if (CBS_len(&mac_data) > 0) { |
| if (!CBS_get_asn1_uint64(&mac_data, &iterations) || |
| iterations > UINT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| } |
| |
| hash_nid = OBJ_cbs2nid(&hash_oid); |
| if (hash_nid == NID_undef || |
| (md = EVP_get_digestbynid(hash_nid)) == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_HASH); |
| goto err; |
| } |
| |
| if (!pkcs12_key_gen_raw(ctx.password, ctx.password_len, CBS_data(&salt), |
| CBS_len(&salt), PKCS12_MAC_ID, iterations, |
| EVP_MD_size(md), hmac_key, md)) { |
| goto err; |
| } |
| |
| if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(&authsafes), |
| CBS_len(&authsafes), hmac, &hmac_len)) { |
| goto err; |
| } |
| |
| if (!CBS_mem_equal(&expected_mac, hmac, hmac_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); |
| goto err; |
| } |
| } |
| |
| /* authsafes contains a series of PKCS#7 ContentInfos. */ |
| if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(ctx.password); |
| OPENSSL_free(der_bytes); |
| if (!ret) { |
| EVP_PKEY_free(*out_key); |
| *out_key = NULL; |
| while (sk_X509_num(out_certs) > original_out_certs_len) { |
| X509 *x509 = sk_X509_pop(out_certs); |
| X509_free(x509); |
| } |
| } |
| |
| return ret; |
| } |
| |
| void PKCS12_PBE_add(void) {} |
| |
| struct pkcs12_st { |
| uint8_t *ber_bytes; |
| size_t ber_len; |
| }; |
| |
| PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, |
| size_t ber_len) { |
| PKCS12 *p12; |
| |
| p12 = OPENSSL_malloc(sizeof(PKCS12)); |
| if (!p12) { |
| return NULL; |
| } |
| |
| p12->ber_bytes = OPENSSL_malloc(ber_len); |
| if (!p12->ber_bytes) { |
| OPENSSL_free(p12); |
| return NULL; |
| } |
| |
| OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); |
| p12->ber_len = ber_len; |
| *ber_bytes += ber_len; |
| |
| if (out_p12) { |
| PKCS12_free(*out_p12); |
| |
| *out_p12 = p12; |
| } |
| |
| return p12; |
| } |
| |
| PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
| size_t used = 0; |
| BUF_MEM *buf; |
| const uint8_t *dummy; |
| static const size_t kMaxSize = 256 * 1024; |
| PKCS12 *ret = NULL; |
| |
| buf = BUF_MEM_new(); |
| if (buf == NULL) { |
| return NULL; |
| } |
| if (BUF_MEM_grow(buf, 8192) == 0) { |
| goto out; |
| } |
| |
| for (;;) { |
| int n = BIO_read(bio, &buf->data[used], buf->length - used); |
| if (n < 0) { |
| if (used == 0) { |
| goto out; |
| } |
| /* Workaround a bug in node.js. It uses a memory BIO for this in the wrong |
| * mode. */ |
| n = 0; |
| } |
| |
| if (n == 0) { |
| break; |
| } |
| used += n; |
| |
| if (used < buf->length) { |
| continue; |
| } |
| |
| if (buf->length > kMaxSize || |
| BUF_MEM_grow(buf, buf->length * 2) == 0) { |
| goto out; |
| } |
| } |
| |
| dummy = (uint8_t*) buf->data; |
| ret = d2i_PKCS12(out_p12, &dummy, used); |
| |
| out: |
| BUF_MEM_free(buf); |
| return ret; |
| } |
| |
| PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
| BIO *bio; |
| PKCS12 *ret; |
| |
| bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| if (!bio) { |
| return NULL; |
| } |
| |
| ret = d2i_PKCS12_bio(bio, out_p12); |
| BIO_free(bio); |
| return ret; |
| } |
| |
| int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
| X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
| CBS ber_bytes; |
| STACK_OF(X509) *ca_certs = NULL; |
| char ca_certs_alloced = 0; |
| |
| if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
| ca_certs = *out_ca_certs; |
| } |
| |
| if (!ca_certs) { |
| ca_certs = sk_X509_new_null(); |
| if (ca_certs == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ca_certs_alloced = 1; |
| } |
| |
| CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); |
| if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { |
| if (ca_certs_alloced) { |
| sk_X509_free(ca_certs); |
| } |
| return 0; |
| } |
| |
| *out_cert = NULL; |
| if (sk_X509_num(ca_certs) > 0) { |
| *out_cert = sk_X509_shift(ca_certs); |
| } |
| |
| if (out_ca_certs) { |
| *out_ca_certs = ca_certs; |
| } else { |
| sk_X509_pop_free(ca_certs, X509_free); |
| } |
| |
| return 1; |
| } |
| |
| int PKCS12_verify_mac(const PKCS12 *p12, const char *password, |
| int password_len) { |
| if (password == NULL) { |
| if (password_len != 0) { |
| return 0; |
| } |
| } else if (password_len != -1 && |
| (password[password_len] != 0 || |
| OPENSSL_memchr(password, 0, password_len) != NULL)) { |
| return 0; |
| } |
| |
| EVP_PKEY *pkey = NULL; |
| X509 *cert = NULL; |
| if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { |
| ERR_clear_error(); |
| return 0; |
| } |
| |
| EVP_PKEY_free(pkey); |
| X509_free(cert); |
| |
| return 1; |
| } |
| |
| void PKCS12_free(PKCS12 *p12) { |
| if (p12 == NULL) { |
| return; |
| } |
| OPENSSL_free(p12->ber_bytes); |
| OPENSSL_free(p12); |
| } |